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Abstract—The rapid evolution of Web UI incurs time and
effort in Ul test maintenance. Prior techniques in Web UI
test repair focus on locating the target elements on the new
Webpage that match the old ones so that the corresponding
broken statements can be repaired. These techniques usually rely
on prioritizing certain attributes (e.g., XPath) during matching
where the similarity of certain attributes is ranked before other
attributes, indicating that there may be bias towards certain
attributes during matching. To mitigate the bias, we present the
first study that investigates the feasibility of using prior Web UI
repair techniques for initial matching and then using ChatGPT to
perform subsequent matching. Our key insight is that given a list
of elements matched by prior techniques, ChatGPT can leverage
language understanding to perform subsequent matching and
use its code generation model for fixing the broken statements.
To mitigate hallucination in ChatGPT, we design an explanation
validator that checks if the provided explanation for the matching
results is consistent, and provides hints to ChatGPT via a self-
correction prompt to further improve its results. Our evaluation
on a widely used dataset shows that the ChatGPT-enhanced
techniques improve the effectiveness of existing Web test repair
techniques. Our study also shares several important insights in
improving future Web UI test repair techniques.

Index Terms—Web Ul Test Repair, Test Maintenance, Ul
Element Matching

I. INTRODUCTION

When developers change a Web application’s user interface
(UI) for rapidly changing requirements, the corresponding Web
UI tests need to be manually updated for test maintenance.
To reduce manual efforts in repairing broken Web UI tests,
academia and industry have proposed several approaches to
automatically fix broken Web UI test cases caused by software
evolution [1], [2]], [3]]. The key step in automated repair of Web
UI tests is to modify broken statements containing outdated
element locators by matching the element e,;4 in the old version
of a Web application with the element e,,¢,, in the new version
[4]]. Prior Web UI test repair techniques mostly rely on a set of
Document Object Model (DOM) attributes (e.g., identifiers and
XPath) [1]] or visual information [2] to determine whether the
two elements e,;q and e,.,, match. These techniques extract
and compute the similarity of this information to select the
most similar element as the result of the matching.

Due to numerous attributes available for matching Web UI
elements, these techniques may prioritize certain attributes.
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For example, WATER [, a classical Web UI test repair
technique, applies a multi-step matching process using different
attributes. First, it searches for identical elements by matching
five attributes (id, XPath, class, linkText, name). If unsuccessful,
it then finds similar DOM nodes using additional attributes.
Specifically, it identifies elements with the same tagname, and
computes their similarity scores between e,;4 and e,,¢,, With the
weighted sum of XPath and other attributes where it prioritizes
XPath similarity based on the heuristic that XPath of nodes
“should be very similar across versions” [1l]. As the prioritization
and the predefined order on matching these attributes are
usually based on heuristic of the tool developers, the matching
algorithm may not accurately reflect the evolution of the Web
element, causing mismatches, and subsequently failed repairs.
Hence, it is important to understand the attribute prioritization
used by prior test repair approaches. Meanwhile, prior learning-
based techniques show promising results in combining different
types of information for repairing broken Android GUI
tests (e.g., combining word and layout embeddings [3]], or
fusing GUI structure and visual information [6]). The richer
representation used by these learning-based techniques has
been shown to enhance the accuracy of the UI matching step.

To solve the aforementioned problems of Web UI test
repair and to hinge on a richer representation in learning-
based approach, we present the first study of understanding
the attribute prioritization and enhancing traditional Web UI
test repair approaches with LLMs like ChatGPT. Our use
of ChatGPT is motivated by the promising results shown in
prior studies for solving related software maintenance tasks,
(e.g., test generation [7], and automated program repair [8],
[O). However, the Web UI test repair problem differs from
these tasks as it mainly involves Web element matching where
accurate matching results typically lead to the correct repairs.
Specifically, our study evaluates the effectiveness of integrating
ChatGPT into two representative Web test repair techniques
(WATER and VISTA [2]). To further evaluate the heuristic used
in WATER that prioritizes XPath similarity, we also design a
simplified variant of WATER that performs matching using only
Levenshtein edit distance between XPaths of the old element
€o1q and the new element e, (we call this approach EDIT
D1is). Our study focuses on Java Selenium tests which are
commonly used by Java Web applications.

The key insights of our approach are twofold: (1) we first
rely on traditional Web UI test repair approaches to obtain



an initial list of candidate matched elements (which may be
biased by the prioritization used by the approach), and then use
ChatGPT to perform subsequent matching to further select the
best matched element in the candidate list, and (2) as ChatGPT
may suffer from the hallucination problem [7], we design our
prompt based on OpenAl’s official documentation by asking

ChatGPT to generate an explanation along with each selection.

To mitigate hallucination, we propose an explanation validator
that automatically checks for the consistency of the explanation,
and instruct ChatGPT to self-correct the initial selection based
on detected inconsistent explanation.

Our study aims to answer the following questions:
RQ1: Can ChatGPT help improve the accuracy of Web
element matching of prior Web test repair approaches?
RQ2: What is the effectiveness of ChatGPT in repairing broken
Selenium statements for Web test repair?
RQ3: When ChatGPT explains the result of the element
matching, what is the quality of the explanation?
RQ4: Can our proposed explanation validator guide ChatGPT
in self-correction to improve the matching and repair results?
Contributions. Our contributions are summarised as follows:

Study: We present the first study of understanding attribute
prioritization and enhancing traditional test repair approaches
with ChatGPT for Web UI test repair. Our findings include: (1)
prior test repair tools have preferences towards certain attributes
(e.g., XPath), (2) the combination with ChatGPT helps improve
the matching accuracy of all evaluated approaches; (3) to our
surprise, although EDIT DIS performs the worst individually,
its combination with ChatGPT outperforms all the evaluated
approaches in element matching and repair; (4) the repair
effectiveness of all evaluated approaches is generally similar
to the matching ones but there is one case where the repair
performance decreases; (5) our proposed workflow of checking
for explanation consistency and generating self-correct prompt
as hint to ChatGPT could further improve the effectiveness for
certain combinations (e.g., WATER+ChatGPT).

Technique: We proposed a novel Web Ul test repair technique
that uses traditional Web test repair approaches for initial
matching and then uses ChatGPT for subsequent matching (uses
all attributes of each UI element to perform another matching)
to further improve the matching accuracy. Instead of prioritizing
certain attributes in prior approaches (Table[ITI), the subsequent
matching steps use all attributes. To combat the hallucination
problem in ChatGPT, we also design an explanation validator
that automatically checks for the consistency of the generated
explanation to guide self-correction.

Evaluation: We evaluate three baseline approaches (WATER,
VISTA, EDIT D1S), their combinations with ChatGPT, and two
recent approaches (WEBEVO and SFTM). Our evaluation on
a widely used dataset [[10] shows that the proposed workflow
further improves the effectiveness of prior approaches in Web
UI element matching and test repair.

II. BACKGROUND AND RELATED WORK

In this section, we introduce related work on test repair to
provide a background on existing approaches.

Automatic UI test repair. Unlike traditional unit tests, UI tests
are typically used to validate the functionality of particular
UI application components through simulated user interactions
such as button clicks. [[1]. When a UI application evolves, the
corresponding Ul tests may crash, leading to significant effort
required to manually fix these broken tests. Several techniques
have been proposed for Ul test maintenance [[1], [2], [3l], [L1],
(120}, 31, [140, S0, [1S], [16]. Most of these techniques focus
on maintaining Ul tests for mobile applications [L1], [12], [6l,
[L7], [5], Web applications [1]], [2]], [L5], [3], [16] or desktop
applications [13]], [[14]. Prior Web UI test repair techniques [[1]],
[2], [3]] typically (1) execute the test, (2) extract information
from the Webpage based on various attributes [1]] or visual
information [2] of Web elements, (3) use various matching
algorithms, and (4) update the locator of the matched element
in the UI test to fix the broken test.

Model-based approaches [[L1], [12], [13], [14], [10] build a
model of the application under test and modify the event flow to
fix tests. Meanwhile, several heuristic-based approaches [[11], [2]],
[3] relocate elements with UI matching algorithms and update
broken tests via replacement of the matched elements. As
heuristic-based approaches without building a model are more
practical for large-scale applications, our paper mainly evaluates
these approaches. A recent approach [3] first matches elements
of two versions of Android apps using various similarity metrics
(e.g., semantic embedding similarity, and layout similarity based
on node embeddings of the GUI layout tree), and then repairs
the tests by updating broken locators.

UI element matching. Given an element from an old version
web, UI element matching aims to find the corresponding
element in the new version. Ul element matching has been
applied to several domains (e.g., test reuse [18], [[19], automated
compatibility testing [20], and automated maintenance of UI
tests). While several techniques exist for Ul element matching,
only a few are suitable for our evaluation. This paper evaluates
classic UI test repair tools WATER [1]] and VISTA [2], which
match elements based on attribute information and visual
information, respectively. Existing repair work mainly relies
on strategies based on element information [1I], [2]], or simply
combining machine learning algorithms with repair tools [5]].
COLOR [15]] and GUIDER [6] use a combination of attribute
and visual information for matching. However, COLOR only
returns updated locators instead of repairing broken tests while
GUIDER focuses on Android test repair. Due to the differences
between UI tests and existing APR work [21]], we may not be
able to directly use prior APR approaches to repair UI tests.
Unlike prior approaches, we explore the feasibility of using
prior test repair approaches to obtain an initial ranked list of
elements and use ChatGPT to perform subsequent matching.

Instead of fixing broken Web UI tests, several approaches
focus on improving the robustness of element locators. Robula+
[22] focuses on generating robust XPath locators as XPath
locators are sometimes the only option. Robula+ checks
whether an element or its ancestors possess unique attributes
from a predefined whitelist (e.g., id, name, class). If multiple
attributes are found, it chooses the attribute with the highest



priority to refine the XPath, thereby enhancing its robustness.
Expanding on this, subsequent work [23]] recommends multiple
locator generators voting on the outcome, favoring reliable
generators. Our design of the experiment is similar in essence
with Robula+, letting ChatGPT make a selection among
multiple candidates. However, our emphasis is on fixing broken
locators instead of improving the robustness of the locators.
While enhancing the robustness of locators is outside the scope
of this paper, it could be worthwhile future work to explore
LLM-based approaches for generating robust locators.

LLMs in software maintenance. LLMs such as ChatGPT
have been applied for various software maintenance tasks [24]],
[25], [26], [7], [8], [9], including related tasks such as (1)
test generation [7]], [27], [28], [29], [30], [31], Android UI
testing [32], [33]], predicting flaky tests [34], and (2) automated
program repair [8], [9], [24], [35]. ChatGPT is a transformer-
based chatbot developed by OpenAl that helps developers create
conversational Al applications [36]. Our proposed approach
uses ChatGPT for (1) Web UI element matching, (2) providing
explanations for the selected elements, and (3) repairing broken
statements in tests. To improve code-related generation for
LLM-based approaches, a recent approach was proposed using
knowledge gained during the pre-training and fine-tuning stage
to augment training data and their results show significant
improvement for code summarization and code generation [26].
Similar to this approach, our proposed workflow also uses
the experience gained during the selection of UI elements
(i.e., inconsistency in the previous explanation generated by
ChatGPT) to improve the Ul matching results. Different from
the aforementioned work, this paper focuses on using ChatGPT
for solving the Web UI test repair problem that aims to perform
UI test update by fixing broken UI element locators. To the best
of our knowledge, our study also presents the first attempt that
investigates and improves the quality of explanations provided
by ChatGPT by designing an explanation validator to check
the reliability of the explanation to improve the effectiveness
of UI matching and test repair.

I11.

We show two examples where the combination of ChatGPT
helps to improve the matching and test repair results.
Without self-correction. Table [[] shows a target element to
be matched by WATER in the old version of the MRBS
app, and key candidates from the returned list by WATER.
Initially, WATER identifies elements with the same text as
the target and returns the first match. However, in this case,
two elements share the same value for the “text” attribute
as the target element, and the second one has more similar
XPath, position, and size to the target element than the first
match, and ChatGPT correctly selected “Candidate 2” as the
matching result from this ranked list. ChatGPT also explained
that it chose this element “Because they share the most similar
attributes: xpath, text, tagName, X, y, width, height.” (its
explanation consistency is 0.8, because all attributes except
for XPath are consistent with the selection, and the most
similar XPath is “/html[1]/body[1]” from another candidate).

MOTIVATING EXAMPLES

36 driver.findElement(By.xpath("//*[@id=\"content - wrapper\"}/div[1]/ul/li[3]/a")).click();
37 Thread.sleep(2000);

75 Assert.assertEquals(driver.findElement(By.link Text("My tasks")).getText(), ("My tasks"));

@ xpath=/humi[1 /body[ 1)/div[2)/div[2)/div 1 /[ 1)[3)al1], text="My tasks', tagName="a', linkText="My tasks'

© xpath="htmi[1 /body[1/div[1/div[2/div[ 1 ul[1/{1Va[1],
© xpath=/htmI[1/body[1}/div[1}/div[2)/div[2]/div[1Vdiv[4}/div[1/h2[1)/a[1]

text="Desktop', tagName="a', linkText="Desktop’

', text="My tasks', tagName="2', linkText=My tasks'

Fig. 1: Generated fixes for the broken statement in Collabtive
that shows the effectiveness of self-correction.
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Fig. 2: Our proposed workflow of Web Ul test repair

After matching, our approach fed ChatGPT with the repair
prompt, and it successfully repaired the broken statement by
updating the locator with XPath from “Candidate 2”. In this
example, with ChatGPT’s explanation being 80% consistent,
the subsequent matching step by ChatGPT helps select the
correct but lower-ranked candidate, leading to successful repair.
With self-correction. Figure [T] shows the matched elements
for another target element ((D) selected by WATER+ChatGPT
before and after self-correction. Initially, WATER+ChatGPT
selected ((2)) with the explanation “Because they share the most
similar attributes: xpath, text, tagName, linkText.”. However,
our explanation validator detects inconsistencies in the attributes
text and linkText (Explanation Consistency=0.5) and provided
this feedback via the self-correction prompt. Guided by this,
WATER+ChatGPT revised its selection to () correctly, with a
new explanation “Because they share the most similar attributes:
xpath, text, tagName, linkText.” (Explanation Consistency=0.75
as all attributes except XPath were consistent with the selection).
This example highlights how the self-correction mechanism,
supported by the explanation validator, guides ChatGPT to
identify and fix its inconsistencies to improve matching results.

IV. METHODOLOGY

Figure [2] shows the workflow of our approach. First, our
approach extracts information from the target element on the old
Webpage based on the broken statement and all elements on the
new Webpage. Then, it uses a test repair tool (WATER, VISTA
or EDIT DI1S) to rank the elements on the new Webpage, and



TABLE I: An example that shows the target element to be matched, and a list of candidate elements returned by WATER

Target Element | {:4_1018, height=15, isLeaf=true)

{numericld=96, id=", name=", class=", xpath="/html[1]/body[1]/p[1]’, text="Unknown user’, tagName="p’, linkText=", x=8, y=90,

Candidate 1

Candidate 2

y=69, width=982, height=15, isLeaf=true}

{numericld=40, id=", name=", class=", xpath="/html[1]/body[1]/div[1]/table[1]/tbody[1]/tr[1]/td[7]/div[1]/a[1]", text="Unknown user’,
tagName="a’, linkText="Unknown user’, x=917, y=6, width=111, height=23, isLeaf=true}
{numericld=47, id=", name=", class=", xpath="/html[1]/body[1]/div[2]/p[1]’, text="Unknown user’, tagName="p’, linkText=", x=26,

selects top-ranked ones for ChatGPT to perform further element
matching. Our approach then instructs ChatGPT to select the
matching element and explain its choice by mentioning the
most similar attributes it considers. Based on the generated
explanation, our explanation validator calculates the consistency
of the explanation. As the accuracy of UI matching cannot
be automatically validated without checking if the broken
statement has been repaired correctly, our approach generates
the repair prompt for ChatGPT to proceed with the repair by
instructing ChatGPT to fix the broken statement based on its
selected element. If the repair fails with explanation consistency
(EC) less than 1, our approach generates a self-correctness
prompt, our approach asks ChatGPT to provide another answer
based on the inconsistencies in its original explanation. Finally,
we obtain the repaired broken statement from ChatGPT. Due to
the randomness of ChatGPT, we rerun the matching and repair
process four times, and check if at least one correct repair
occurs among the four runs, following the prior study [8].

A. Prompt Design of Repair and Self-Correction Prompt

We interact with ChatGPT via the API of the gpt-3.5-turbo
model [37]. For optimal results, we design our prompt based on
the official OpenAl documentations, including: (1) the official
ChatGPT API Guide [38] and (2) OpenAl six strategies for
achieving better results [39]]. Table lI| shows for each sentence of
the prompt (the “Prompt Content” column), the corresponding
rule (the “Rule in OpenAl official documentation” column)
that inspires the design. The ChatGPT API Guide emphasizes
the importance of system instructions in providing high-level
guidance for conversations so we use system instructions to
design the Web UI test repair context part by telling ChatGPT
that (1) it is a web UI test repair tool, and (2) outlining the
steps for fixing a broken statement.

Due to token limits, we summarize ChatGPT’s matched
elements’ information from previous dialogues to guide subse-
quent repair, aligning with the tactic “For dialogue applications
that require very long conversations, summarize or filter
previous dialogue.” [39]]. Following the rule “Use delimiters to
clearly indicate distinct parts of the input” [39], we use colons
to separate labels from respective contents, and curly braces
to separate the information of each element, helping ChatGPT
distinguish the input. Table [ shows our prompt patterns and
the applied rules. The complete prompt generation rules are:

Matching Prompt: Context[pl, p2, p3] + Input[p8§]
Repair Prompt: Context[pl, p4, p5] + Input[p9]
Self-Correction Prompt: Context[p6, p7]

B. Information Extraction and Attribute Prioritization

To extract Web element information, we use an existing
component in UITESTFIX [3]] to extract relevant information
for each element. Specifically, it retrieves the HTML source
code of the target Webpage via a Web browser, then uses Jsoup
library [41] to extract the Web elements’ information in it. Note
that we did not evaluate UITESTFIX’s performance with other
tools due to the unavailability of its matching algorithm. We
extract information from several attributes: id, name, class,
XPath, text, tagName, linkText, x, y, width, height, and isLeaf.
Understanding attribute prioritization. To gain a better under-
standing of the attribute prioritization used in prior techniques,
we read the original paper and the implementation of each
technique (if available). Table shows the attributes and the
priorities used by prior Web UI matching and repair approaches.
The first two columns of Table [[II] show the descriptions and
examples of the attributes. The column “Used by Tools” shows
if prior approaches WATER, VISTA, EDIT DIs, or UITESTFIX
consider these attributes when matching elements and how
these tools use them. We observe from Table [III| that XPath is
the most commonly used attribute in all approaches. VISTA uses
the fewest DOM attributes because it focuses on the image
template matching algorithm. Two attributes (ie, width and
height) are used to represent the size of the element. Meanwhile,
WATER and UITESTFIX exclude these two attributes. WATER
uses the greatest number of attributes, including id, XPath,
class, linkText, name, tagName, x and y. UITESTFIX also uses
four other attributes, of which text and isLeaf are not used by
WATER. isLeaf is used by UITESTFIX toiteratively refining
the similarity tthroughugh the DOM structure.

C. Candidate Selection

To address token limits, we provide ChatGPT with a list of
10 top-ranked candidate elements from the matching results of
prior approaches (WATER,VISTA, EDIT D1S). We only chose
10 elements due to (1) the model’s 4096-token limitation, and
(2) the lengthy information of each element’s 12 attributes. We
briefly introduce the three approaches below:

VISTA: VISTA uses Fast Normalized Cross Correlation algo-
rithm [42] to calculate the template matching results, defining
the position and size of the matching area by the element’s
X, ¥, width, and height. It returns a list where elements of a
particular screen position are ranked in descending order based
on their similarity scores. Instead of returning only the top 1
element in the original version of VISTA, we modify VISTA to
retrieve the top 10 elements as candidates for further matching.



TABLE II: The patterns of prompt and generation rules

PID | Rule in OpenAD’s official documentation

[ Prompt Content

Web UI test repair context patterns: Context

pl Use system instruction to give high level instructions [38]

You are a web UI test script repair tool.

p2 Split complex tasks into simpler subtasks [40]

To repair the broken statement, you need to choose the element most similar to
the target element from the given candidate element list.
Give me your selected element’s numericld and a brief explanation containing
the attributes that are most similar to the target element.

p3 Provide examples [39]

Your answer should follow the format of this example:
“The most similar element’s numericld: 1. Because they share the most similar
attributes: id, xpath, text.”

p4 Summarize or filter previous dialogue [39]

To repair the broken statement, you chose the element selected element as the
most similar to the target element from the given candidate element list.

pS Specify the steps required to complete a task [39]

Now based on your selected element, update the locator and outdated assertion
of the broken statement. Give the result of repaired statement.

p6 Use delimiters to clearly indicate distinct parts
of the input [39]

This is a previous prompt: Matching Prompt
This is your previous answer: Corresponding Answer

p7 But your explanation for attributes attributes are inconsistent with your selection

and this will influence the correctness of your answer. Please answer again.

Input pattern: Input

p8 Use delimiters to clearly indicate distinct parts
of the input [39]

Target element: {target element}
Candidate elements: {candidate element 1}, {candidate element 2} ...

p9 Broken statement: broken statement

TABLE III: Extracted attributes and the tools that use them. The superscript number indicates the priority of an attribute.

Attribute | Description (Example for an element) Used by Tools

id Unique identifier for an element (userName) WATERET UITESTFIXZT
name Name for an element (submit) WATERE®

class Class name for an element (button) WATERE3

XPath Path of an element in the DOM tree (/html[1]/body[1]/div[1]/form[1]/ input[1]) | WATERFZ-L7 EbpIT Dis™, UITESTFIXT 2
text Textual information of an element (Enter) UITESTFIX L3

tagName | Name of the HTML tag (input) WATERPS UITESTFIXT 2
linkText The text content of a hyperlink (Logout) WATER A

X X-coordinate for an element (66) WATER®

y Y-coordinate for an element (183) WATER®

width Width of an element (48) VISTATT, WATER®

height Height of an element (21) VISTATT, WATER®
isLeaf True if the element is a leaf node of the DOM tree, and false otherwise (true) UITESTFIx?

1 The superscript ‘E’ means the tool checks whether the candidate element’s attribute is exactly the same as the target element.

2 The superscript ‘L’ indicates the tool uses Levenshtein Distance to calculate the similarity.

3 The superscript “T’ means that the tool uses TF-IDF to calculate the similarity.

4 The superscript ‘P’ means that the tool calculates the similarity of images, where the width and height of the images affect the calculation.
5 We refer to the VISUAL mode of VISTA [2] for VISTA’s priority, DOM mode of VISTA [2] for WATER’s priority.

WATER: As shown in Table WATER first checks if any
candidate elements share the same id, XPath, class, linkText, or
name as the target elements. and returns the first match. If none
are found, WATER calculates similarity score for candidates
with the same ragName as the target element, and returns
the first one exceeding the threshold. The score combines the
Levenshtein distance of their XPath, and the equivalence of
their size and position based on x, y, width, and height with a
small tolerance for variation. Notably, WATER gives a greater
weight (0.9) to the XPath similarity because its authors assume
that matched elements have similar XPaths after the version
update. We modify WATER to return a de-duplicated list of 10
unique candidates instead of a single match.

EDpIT Di1S: Inspired by the idea of prioritizing XPath similarity
in WATER, we design a simplified matching algorithm to
only consider the XPath similarity. Similar to WATER, we use
Levenshtein distance [43] to measure the difference between
XPaths. Levenshtein distance measures the minimum number
of insertions, deletions, and substitutions needed to transform
one string into another. Greater distance means that the two

elements are less similar. This algorithm has also been used
in Web testing (e.g., detecting conflicting and outdated data
on Webpages [44]]). This variant returns the top 10 elements
ranked in descending order based on their XPath similarities.

D. Explanation Validator

As shown in the “Prompt Content” column in Table [T}
we instruct ChatGPT to generate an explanation to describe
the attributes used for selecting the best matched element.
Our intuition is that if the provided explanation is consistent,
then the selection is more likely to be correct (and repair is
more likely to be successfully generated with correct matches).
Based on this intuition, we designed an explanation validator
to check if ChatGPT’s explanation is consistent with the
actual selection. Specifically, for each attribute ¢ mentioned
in the explanation, our explanation validator calculates the
following to determine the most similar element for the
consistency calculation cons(a;, R) where cons(a;, R)=1 if
the most similar element is selected:



Screen position: We use Euclidean distance to compute
position-related attributes (e.g., X and y coordinates). We select
the element with the minimum distance as the most similar.
Size: We use the product of width and height, and consider
the one with the smallest size difference as the most similar.
isLeaf: We check if the isLeaf values (true or false) are same.
Other attributes: We use Levenshtein edit distance to mea-
sure similarity, with lower values indicating higher similarity.
In the cases where multiple candidate elements and the target
element share the same similarity for a particular attribute,
we will retain the results of multiple candidate elements and
consider the explanation given by ChatGPT to be consistent if
either one of these candidate elements has selected.
Definition 1 (Explanation Consistency (EC)). Given the target
element t (the element in the old version of the Webpage to be
matched), the selection result R and an explanation e where
e mentioned one or more attributes A = 1,02, ...,0n, WeE
calculate the Explanation Consistency (EC) of e by computing
cons(a;, R) for each attribute a; where cons(a;, R) checks
whether each attribute a; of R is most similar to that of the
target element t (cons(a;, R)=1 if the most similar element
based on a_i is selected in R, and cons(a;, R)=0 otherwise).

", cons(a; € A,R)
4]

Def. [I] presents the definition for Explanation Consistency
(EC). For each explanation generated by ChatGPT, our expla-
nation validator checks whether the attributes mentioned in
the explanation that are similar between the selected element
and the target element are consistent with the calculated
values of all mentioned attributes. If the calculated values
for all mentioned attributes are consistent, then our explanation
validator considers the provided explanation as consistent across
all mentioned attributes (FC=1).

EC(e) = 2

V. EXPERIMENTAL SETUP

Dataset. We use an existing dataset [10] to evaluate the
effectiveness of Web test repair approaches. We use this dataset
because (1) it is the only publicly available dataset for Web UI
test repair, and (2) it has been widely used in prior evaluations
of Web UI test repair approaches [3], [10]. The dataset contains
Java Selenium UI tests from five open-source real-world Web
applications (and VISTA [2]] used 3 of them). All of these
open-source applications are hosted in Sourceforge (except for
MantisBT that is hosted in GitHub [45]). We follow the same
filtering process of a prior evaluation [3|] to remove duplicated
tests and non-broken tests. Subsequently, we obtained 62 test
cases containing 139 broken statements as our dataset. Each
test script contains 1 to 6 broken statements, with an average
of 70 lines of code per script.

Baselines selection. We evaluated three approaches (WATER,
VisTA, EDIT DI1S) that are widely used in prior studies of
Web UI test repair. Similar to prior study [3], we exclude the
model-based tool [[10] as the provided code leads to compilation
errors due to missing dependencies. We did not compare against
several approaches [3l], [L6] as their matching algorithms are not

TABLE IV: Statistics of open-source Web apps in our dataset

Application AV  OId Version Updated Version | Tests Broken Stmt
AddressBook 8 4.0 6.1 2 2
Claroline 29 1.10.7 1.11.5 27 53
Collabtive 5 0.65 1 4 11
MantisBT 38 1.1.8 1.2.0 25 66
MRBS 24 1.2.6.1 1.49 4 7
Avg/Total 21 - - 62 139

publicly available so we could not evaluate their effectiveness
in both matching and repair.

Comparison with recent approaches. To assess the ef-
fectiveness of our approaches, we also evaluate two recent
approaches: WEBEVO [46], which employs DOM tree-based
change detection, history-based semantic structure change
detection, and semantics-based visual search to match elements;
and SFTM [47], which uses TD-IDF to calculate the initial
similarity score on tokenized attributes and iteratively refines
the matching based on the DOM structure. We did not combine
these approaches with ChatGPT due to budget constraints.

We used the implementations of WATER, VISTA, WEBEVO,
SFTM from UITESTFIX [3] for evaluation, which includes
the re-implemented WATER by VISTA[2], and open-source
implementations for the other tools.

Preparing ground truth dataset. As our evaluation dataset
[LO], [3]] only has tests for the old versions of apps, and the test
fixes are unavailable, we need to manually label the ground
truths for the matching UI elements for the new versions.
Specifically, two annotators independently labeled ground truths
for each UI element located in the broken statement in the
dataset for the three individual baselines (WATER,VISTA,EDIT
Dis). The annotators are graduate students with over one year
of experience in relevant research of Web UI test repair. For 12
cases out of 3*¥139=417 cases (139 for each of the 3 individual
baselines), the annotators had disagreements and met to resolve.

Table shows the old and updated versions of the open-
source Web apps in our dataset. The “AV” column denotes
the number of versions between them where a greater number
means more significant UI changes, posing more challenges
to matching and repair tasks. The “Test” column denotes
the number of tests for each app, whereas the ‘“Broken
Stmt” denotes the number of broken statements per app. Our
experiment assumes each broken statement is independent
so that we can measure the effectiveness of ChatGPT in
fixing each broken statement. This assumption is similar to
prior evaluations [48]], [49] of learning-based automated repair
techniques where the correct fault location is provided.

All experiments are run on a computer with an Intel Core
i5 processor (1.6 GHz) and 12 GB RAM. For the experiments
related to ChatGPT, we use the API of gpt-3.5-turbo model
(which was the latest at the time of our experiments) and set
the temperature to 0.8 as used in prior work [9].

VI. RQ1: EFFECTIVENESS OF Ul MATCHING

We evaluate the effectiveness of Ul matching by calculating
(1) the number of correct matches, and (2) ranking performance
of the baselines.



TABLE V: The number of correct matching and repairs of different approaches. Bold values indicate the best performance.

Recent Approaches Baselines and Combination Approaches (with self-correction)
Applications WebEvo SFTM VISTA VISTA+ChatGPT WATER WATER+ChatGPT| EDIT DIS |EDIT DIS+ChatGPT
Matching Fix |Matching Fix|Matching Fix |Matching Fix |Matching Fix |[Matching Fix |Matching Fix |Matching Fix
AddressBook 0 0 2 2 I 1 1 1 2 2 2 2 0 0 2 2
Claroline 14 14 15 15 48 48 51 51 18 18 18 18 1 1 47 47
Collabtive 5 5 5 5 11 1 1 10 10 11 11 8 8 8 8
MantisBT 53 53 44 44 11 11 37 37 50 50 56 56 34 34 64 63
MRBS 2 2 5 5 7 17 7 7 1 1 4 4 0 0 2 2
Total 74 74 71 71 68 68 97 97 81 8l 91 91 43 43 123 122
1) Matching Result and Analysis: We evaluate a total of - 100%
. . . . . . . . S
eight matching approaches, including individual baselines £ e,
(VISTA, WATER, EDIT DIS), their combinations with ChatGPT, = 0" e
] /
and two recent approaches. For each approach, we recorded S 50%
its abilities to correctly match the ground truth elements of H = VISTA
the broken statements in our dataset. The “Matching” columns g B% WATER
. . . = Edit Distance
in Table [V] show the results on the evaluated applications. E o
o 1 2 3 4 5 6 7 8 9 10

Comparing the overall matching results of individual baselines
with their combination with ChatGPT (with self-correction),
we observe that all combinations outperform the individual
baseline (i.e., 97 versus 68 for VISTA, 91 versus 81 for WATER,
and 123 versus 43 for EDIT D1s). This result confirms our
hypothesis that combining prior test repair approaches with
ChatGPT help improve the UI matching results. Across projects,
the improvement is greatest in MantisBT with VISTA+ChatGPT
and WATER+ChatGPT, in Claroline with EDIT DIS. Meanwhile,
EDIT D1s+ChatGPT outperformed EDIT DIS in most projects,
including AddressBook, Caroline, and MRBS. For the recent
approaches, Table [V] shows that the WEBEVO and SFTM
give similar matching results (74 and 71) that are slightly
better than the two individual baselines (VISTA and EDIT DIs).
However, both recent approaches perform worse than all the
combination approaches, indicating that the combination with
LLMs like ChatGPT can further enhance the matching accuracy
of traditional approaches (WATER and VISTA).

rFinding 1: All combinations of prior Web test repair‘
approaches with ChatGPT performs generally better than the
corresponding standalone approach (without ChatGPT).
Implication 1: Our suggested workflow of using prior repair
tools for selecting candidate elements and then ChatGPT for
subsequent matching help improve the matching accuracy.

We notice that VISTA’s matching algorithm using visual
information is effective for certain apps (e.g., Claroline and
MRBS). However, EDIT D1sS+ChatGPT performs the best
among all approaches, fixing 122 out of a total of 139
broken statements. Specifically, EDIT DiS+ChatGPT yields
the greatest improvement (186%) over the individual EDIT D1s
approach. After combining with ChatGPT, it correctly matches
80 elements that were originally mismatched and ensures that
nearly all initially correctly matched statements remain correct
(42). Given that the individual EDIT DiS performs the worst
among all baselines, we think this result is counterintuitive as
one would select the tool that performs well individually (i.e.,
WATER) to combine with ChatGPT to get more improvement.

Top N Candidates in the List

Fig. 3: Comparison of Hit Ratios for the three baselines

Finding 2: Although the individual EDIT DIS approach
performs the worst among all individual baselines, its combi-
nation with ChatGPT outperforms all evaluated approaches.
Implication 2: EDIT DIS combines well with ChatGPT. By
prioritizing only XPath similarity, it is more effective in
guiding ChatGPT for subsequent matching.

Effectiveness of the standalone ChatGPT (ChatGPT only).
Another natural baseline approach will be to use the standalone
ChatGPT for performing all the matching and repair steps.
Hence, we also check the effectiveness of standalone ChatGPT
by providing all Ul elements as candidates instead of using
a selection algorithm to choose 10 of them. However, all the
prompts throw errors due to the token limit being exceeded
for all cases. This is expected as for a Webpage in our dataset,
there are an average of 224 Ul elements to be matched where
attribute information for each element occupies around 101
tokens. The average number of tokens (224*101=21733) also
shows the high cost of the standalone ChatGPT.

2) Ranking performance of the baselines: As the combina-
tion of EDIT Di1S+ChatGPT outperforms all other approaches,
we investigate the reasons behind the improvement. Specifically,
as WATER and VISTA originally return only one element as the
best matching result, we analyze the ranking performance of
each baseline approach. Given a selected element s. by a tool
t and the correct element ¢, (i.e., the corresponding element
in the ground truth), we consider ¢ hits if s. is exactly the
same as t.. If one of the elements in ranked list produced by
a tool ¢ hits, we record its ranking to evaluate the ranking
performance. We employ metrics commonly used in evaluating
top-N recommendation task [50]: Top-K Hit Ratio (HR, or
Recall, in this study, the proportion of experimental instances
in which the top N candidates selected by each baseline contain
ground truth in the candidate list). Figure [3]depicts the variation



of Hit Ratio with increasing values of N for the three baselines.
We observe several interesting trends in Figure [3} 1) When
N=1, the Hit Ratio for VISTA and WATER is already around
50%, while EDIT Di1S’s is only 30.9%. This indicates that the
top candidate of VISTA and WATER already effectively hits
ground truth, whereas EDIT DIS’s advantage is less evident. 2)
As N increases, the Hit Ratios for VISTA and WATER increase
slowly. Even at N=10, their Hit Ratios only increase by less
than 25% compared to when N is 1. In contrast, EDIT D1S’s Hit
Ratio gradually increases, reaching 68.3%, 84.2%, and 90.1%
when N is 5, 9, and 10, respectively. Hence, if expanding the
number of selected candidates to the top 10 in the candidate
list, EDIT DIS is more likely to hit the ground truth element
compared to VISTA and WATER, leading to more potential
improvement when combined with ChatGPT.

VII. RQ2: EFFECTIVENESS AND EFFICIENCY OF REPAIR

Before checking for the repair correctness of each repaired

statement, we first check if ChatGPT has the correct matching
result for the broken statement because a correct repair can
only be generated after a correct matching.
Repair Correctness. As the ground truth repaired statements
written by developers of the Web apps are unavailable in our
dataset, and the repaired statements generated by ChatGPT
may have diverse but semantically-equivalent fixes, we need
to manually validate the correctness of all generated repaired
statements. To reduce the manual effort in validation, we use
a semi-automated approach. Specifically, given the original
broken statement o, the repaired statement r, and the ground
truth element e, we design a parser that automatically parses
the locator type (e.g., By.name and By.xpath), and the
expression within the locator (e.g., the XPath value) in the
repaired statement r to verify their correctness with respect
to the ground truth element e. For example, if ChatGPT
uses By.xpath as the locator, it should use the XPath
information of e rather than the value of other attributes. Our
parser also identifies cases requiring manual analysis where
more substantial changes have been introduced by ChatGPT,
including (1) different types of locators between o and r, and
(2) additional statements added to the repaired statement r.

The “Fix” columns in Table [V] show the repair results
for all approaches. The combination approaches (with self-
correction) yield the best results across four runs. On average,
VISTA+ChatGPT, WATER+ChatGPT, and EDIT D1s+ChatGPT
achieve success in 2.17, 2.01, and 2.89 runs out of 4,
respectively, indicating consistent performance across different
runs. From Table [V] we can observe that the number of correct
repair is almost equal to the number of correct matching, except
for one case in EDIT Di1s+ChatGPT. For MantisBT, EDIT
D1s+ChatGPT correctly matches an element but generates
a repair that modifies the original intention of the broken
statement. Specifically, the broken statement sends an empty
text input “” to the element, but EDIT DIS’s repaired statement
sends “Test” to the element. Nevertheless, EDIT Dis+ChatGPT
still excels with the best performance (122 correct repairs).

Repair Efficiency. To assess potential delays from using
ChatGPT, we measured the total time for matching and repair
for each broken statement. On average, WEBEVO takes 45.73 s,
SFTM takes 47.98s, VISTA takes 36.91s, VISTA+ChatGPT
41.44 s, WATER takes 30.22 s, WATER+ChatGPT 35.11 s, EDIT
Dis 24.02s, and EDIT Di1S+ChatGPT 28.17s per broken
statement. Approaches involving VISTA and WEBEVO are
more time-consuming because VISTA uses computer vision
techniques for matching, which takes more time than match-
ing textual information. SFTM takes more time because it
iteratively propagates and refines the similarity scores during
matching process. Overall, ChatGPT adds minimal overhead.

Finding 3: The repair effectiveness is mostly similar to the
matching effectiveness (except for one incorrect repair).
Implication 3: Using correctly matched elements, most
approaches could repair correctly.

VIII. RQ3: QUALITY OF CHATGPT’S EXPLANATION

As our study uses explanation to overcome hallucination,
it is important to investigate its quality. To assess the quality
of ChatGPT’s explanations for element matching results, we
use two metrics: (1) mention frequency (the number of times
where an attribute @ has been mentioned M), and (2) mention
consistency (the number of times where an attribute a has been
consistently mentioned C' where the consistency is determined
by our explanation validator described in Section [[V-D). These
two metrics helps in answering the research questions below:

RQ3a: What are the frequently mentioned attributes in Chat-
GPT’s explanation?

RQ3b: What are the mentioned attributes that are consistent
in ChatGPT’s explanation?

Table presents the mention frequency and mention
consistency of ChatGPT for each attribute. Table [VI] shows
that ChatGPT mentions two attributes most frequently: XPath
(1660) and fext (1462), whereas the least mentioned attribute
is id (88). Compared to the priority imposed by prior test
repair approaches (shown in Table [[TI), this result shows that
ChatGPT has certain preferences towards particular attributes
since it often mention the XPath and text attributes regardless
of the baseline used for selecting the list of candidate elements.

Finding 4: ChatGPT frequently mentions the the XParh and
text attributes in the provided explanations.

Implication 4: Similar to other approaches that have certain
priority, ChatGPT prioritizes XPath and text attributes.

Table |VI| also shows the attributes with the greatest mention
consistency are text (1026), XPath (995), and tagName (995).
Although ChatGPT prefers using XPath (1660) and fext (1462)
for matching, our results show that prioritizing the text attribute
over the XPath attribute will lead to better matching results
(as the text attribute is mentioned more consistently).



TABLE VI: Effectiveness of SC Mechanism: “M” represents the number of times an attribute is mentioned and “C” denotes
the number of times where the mentioned attribute is consistent in the generated explanation for each approach

Approach id | name | class | XPath text tagName |linkText|position| size | isLeaf

CcCM[C M|C M|C M|C M|C M|C M|C M|C M|C M
VISTA+ChatGPT 10 35|21 50(112 146|393 590| 302 497|368 424|115 135| 85 217|131 218|175 188
WATER+ChatGPT |14 25{40 75[116 152|276 547| 362 498|360 367(180 203|157 241|226 241|212 215
EDIT DIS+ChatGPT|25 28(24 29(123 144|326 523| 362 467|267 309|126 160|137 251|186 249|191 197
Total 49 88|85 154(351 442|995 1660{1026 1462|995 1100(421 498|379 709|543 708|578 600

TABLE VII: The results before and after self-correction (SC)

VISTA+ChatGPT
before SC after SC
97 97

97 97

WATER+ChatGPT
before SC after SC
86 91
86 91

EDIT Dis+ChatGPT
before SC after SC
122 123
121 122

Approach

Matching
Repair

Finding 5: The most frequently mentioned attribute by
ChatGPT (i.e., XPath) tends to lead to incorrect matching
(low mentioned consistency). In contrast, the text attribute is
high in mention frequency and mention consistency.

Implication 5: Prioritizing the text attribute over XPath
attribute is better for ChatGPT as it will be more accurate.

Correlation between EC and correctness of the matching.
Our explanation validator measures the explanation consistency
(EC) as a mechanism to check and improve the reliability of
ChatGPT’s matching results. However, even if our explanation
validator can accurately assess EC, it does not guarantee
correct matching (i.e., retrieving the target element in the
labeled ground truth). To investigate the correlation between
our proposed EC and the correctness of the final matching
result (i.e., whether it selects the ground truth element), we
measure the correlation between these two variables. As the two
variables are binary (correctness) and continuous (EC between
0 and 1) categories respectively, we compute the Point-Biserial
Correlation Coefficient (rpp;) [51] for all explanations. As this
is a special case of the Pearson Correlation, we assess the
strength of the relationship by calculating the correlation coef-
ficient. For the three combinations with ChatGPT, the values
for the Point-Biserial Correlation Coefficient are: 7,,;=0.51
for VISTA+ChatGPT, r,;;=0.84 for WATER+ChatGPT, and
Tp5:=0.49 for EDIT D1S+ChatGPT. These values indicate that
EC and the matching correctness for VISTA+ChatGPT and
EDIT D1s+ChatGPT are only moderately correlated but strongly
correlated for the WATER+ChatGPT combination.

Finding 6: EC for WATER+ChatGPT strongly correlates
with matching correctness among all combinations.
Implication 6: The strong correlation shows that our expla-
nation validator is the most effective for WATER+ChatGPT
to improve its matching correctness.

IX. RQ4: ABLATION STUDY FOR THE SC MECHANISM

As the self-correction (SC) mechanism was the key in the
design of our proposed combination, we conduct an ablation
study in RQ4 to evaluate the effectiveness of this mechanism.

Specifically, we count and compare the number of correct
matches and repairs before and after the self-correction. Table
presents the results of the three approaches combined with
ChatGPT before and after self-correction (SC), comparing
the correct matches and average explanation consistency
(EC). Except for EDIT D1s+ChatGPT, the number of correct
matches has increased for the other approaches. Notably,
WATER+ChatGPT shows the most significant improvement,
gaining 5 more correct matches and repairs after self-correction
(SC). Meanwhile, we think that EDIT Dis+ChatGPT does
not show any improvement due to the moderately positive
correlation between EC and matching accuracy (0.49).

Finding 7: The improvement given by self-correction varies
across tools. Among the three combinations, WATER benefits
the most (5 more correct matching after correction).
Implication 7: Our proposed workflow of guiding ChatGPT
via self-correct prompt improves the effectiveness of certain
combinations (e.g., WATER+ChatGPT).

X. IMPLICATIONS AND DISCUSSIONS

Our study identifies several key implications and suggestions
for future test repair and ChatGPT research.
Prioritization of attributes by Web UI test repair tools.
Table shows varying attribute prioritization in element
matching among prior test repair tools (e.g., WATER prioritizes
XPath similarity, whereas VISTA uses the position and the size
information for visual matching). Our study shows that further
matching with ChatGPT can improve over prior approaches
(Finding 1) by mitigating their bias, leading to more accurate
matching. In fact, our study of the frequently mentioned
attributes in ChatGPT’s explanation also reveals that ChatGPT
has preferences towards certain attributes, e.g., XPath and text
(Finding 5). Although this paper only studies the prioritization
of attributes in two traditional Web test repair approaches,
similar biases may exist in other Ul matching techniques. In
the future, it is worthwhile to study (1) the characteristics of
the selected prioritization in other tasks where Ul matching
algorithms are used (e.g., compatibility testing [20]), and (2)
improving the effectiveness of other UI matching techniques
via subsequent matching using LLMs.
Test repair techniques used for element pre-selection. Our
study that compares three approaches (WATER,VISTA, and
EDIT D1s) for the pre-selection of candidate elements shows
that a simplified version of WATER (i.e., EDIT DIS) combines
well with ChatGPT where EDIT D1S+ChatGPT outperforms all



the evaluated approaches (Finding 2). Compared to WATER that
matches multiple attributes (e.g., id, XPath) and VISTA that uses
visual information for matching, EDIT DISs that solely relies
on XPath is less effective as a standalone matching algorithm
(it performs worst among all individual baselines). However,
our study shows that by using only XPath similarity, EDIT D1s
delegates the responsibility of matching using other attributes to
ChatGPT which later performs subsequent matching. Intuitively,
one may think that WATER that performs the best among
the individual baselines would lead to the best results when
combining with ChatGPT. As the best individual baseline may
not be the most effective combination with ChatGPT, our study
urges researchers to perform thorough evaluation to choose
appropriate baseline to combine with ChatGPT for solving
other software maintenance tasks.

LLM-based test repair and robust locators generation. Our
study shows promising results in using LLMs like ChatGPT
for Web test repair (Finding 3). Our manual analysis shows
that it can generate correct repairs for the broken statements.
Currently, the generated fixes mainly modifies and generate
assertions, showing the promises of LLM-based test repair. In
future, it is worthwhile to study using LLM for improving
test repair technique that fixes broken assertions [52] [53].
Another worthwhile future work is to use LLMs like ChatGPT
to improve the locator robustness and incorporated into prior
techniques like Robula+ [22]. For robust locators genera-
tion, ChatGPT may be instructed to select different locators,
prioritizing locators that are less fragile.

Improving reliability of ChatGPT output. Prior study has
expressed concerns regarding the tendency of ChatGPT to
“hallucinate” when solving specific tasks [7], our workflow
(that checks whether the explanations provided by ChatGPT
are consistent along with the selected elements) shows promis-
ing results for improving the matching accuracy for certain
combinations (Finding 7). Although our study are limited to
Web UI test maintenance, we believe that our proposed way
of checking for explanation consistencies is general and can
be applied to improve the reliability of ChatGPT for other
software maintenance tasks (e.g., test generation).

XI. THREATS TO VALIDITY

External Threats. During the ground truth construction and
evaluating our way of calculating EC, we mitigate potential
bias by asking two annotators to manually construct and cross-
validate the “ground truth target element and patch”. The
two annotators met to resolve any disagreement during the
annotation, and further discussed until a consensus was reached.
To reduce bias in selection of Web applications, we evaluate on
a widely used dataset. As with prior evaluations, our findings
may not generalize beyond the selected applications and tests
in the dataset. To encourage future research in Web UI element
matching and repair, we also release our dataset. Due to limited
resources and budget, we use the cost-effective GPT 3.5-Turbo
model which may be less effective than newer models in Web
test repair. Nevertheless, the extended input of a ChatGPT with
a larger token limit (e.g., ChatGPT-16k) may still be insufficient

for representing Ul elements because for a Webpage, there
are an average of 224 elements to be matched where the
attribute information for each element occupies 101 tokens,
224*101=22624 tokens. As ChatGPT performance may vary
across settings, our experiments may not generalize beyond
the studied settings, and fixing other forms of UI tests (we
focus on Java Selenium Web UI tests [54]]). We mitigate this
threat by reusing settings and suggestions in prior work (e.g.,
referring to OpenAl documentation for prompt design and
using temperature 0.8 as in prior work [9]]), and evaluating
several test repair tools that use different algorithms (e.g., text-
based and visual-based). As our study only evaluates the test
repair capability of ChatGPT, the findings may not apply for
other LLMs. Nevertheless, our suggested workflow of using
LLMs to perform subsequent matching and rematching based
on inconsistent explanations are still generally applicable.
Internal Threats. Our experimental scripts may have bugs
that can affect our results. To mitigate this threat, we made
our scripts and results publicly available [55].

Conclusion Threats. Conclusion threats of our study include
(1) overfitting of our dataset and (2) subjectivity of ground truth
construction. To ensure that the matching and repair tasks do
not overlap with the training dataset of ChatGPT to minimize
the possibility of overfitting, we manually analyze the updated
UI tests, and we have manually labeled and created a ground
truth dataset that can be used to support future research in
Web UI test repair. We mitigate the subjectivity of ground truth
construction by cross-validating between two annotators during
ground truth construction.

XII. CONCLUSIONS

This paper presents the first feasibility study that evaluates
the effectiveness of using prior Web UI repair techniques for
initial matching and then using ChatGPT to perform subsequent
matching to mitigate the bias in prioritization of attributes of
prior approaches. To reduce hallucination in ChatGPT, we
introduce an explanation validator that checks the consistency
of the provided explanation, and gives hints to ChatGPT via
a self-correction prompt to further improve its results. Our
evaluation on a widely used dataset shows that the combinations
with ChatGPT improve the effectiveness of prior techniques.
Our study also reveals several findings and implications. As
an initial study that focuses on LLM-based Web test repair,
we hope that our study could shed light in improving future
Web Ul test repair approaches.
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