
Tumbling Down the Rabbit Hole: How do Assisting
Exploration Strategies Facilitate Grey-box Fuzzing?

Mingyuan Wu†‡

Research Institute of Trustworthy
Autonomous Systems, Southern University

of Science and Technology
Shenzhen, China

11849319@mail.sustech.edu.cn

Jiahong Xiang†‡

Research Institute of Trustworthy
Autonomous Systems, Southern University

of Science and Technology
Shenzhen, China

xiangjh2022@mail.sustech.edu.cn

Kunqiu Chen
Southern University of Science and

Technology
Shenzhen, China

11911626@mail.sustech.edu.cn

Peng Di
Ant Group

Hangzhou, China
dipeng.dp@antgroup.com

Shin Hwei Tan
Concordia University

Montreal, Canada
shinhwei.tan@concordia.ca

Heming Cui
The University of Hong Kong

Hong Kong, China
heming@cs.hku.hk

Yuqun Zhang†*
Research Institute of Trustworthy

Autonomous Systems, Southern University
of Science and Technology

Shenzhen, China
zhangyq@sustech.edu.cn

Abstract—Many assisting exploration strategies have been
proposed to assist grey-box fuzzers in exploring program states
guarded by tight and complex branch conditions such as equality
constraints. Although they have shown promising results in
their original papers, their evaluations seldom follow equivalent
protocols, e.g., they are rarely evaluated on identical benchmarks.
Moreover, there is a lack of sufficient investigations on the
specifics of the program states explored by these strategies
which can obfuscate the future application and development
of such strategies. Consequently, there is a pressing need for
a comprehensive study of assisting exploration strategies on
their effectiveness, versatility, and limitations to enlighten their
future development. To this end, we perform the first com-
prehensive study about the assisting exploration strategies for
grey-box fuzzers. Specifically, we first collect nine recent fuzzers
representing the mainstream assisting exploration strategies as
our studied subjects and 21 real-world projects to form our
benchmark suite. After evaluating the subjects on the benchmark
suite, we then surprisingly find that the dictionary strategy is
most promising since it not only achieves similar or even slightly
better performance over the other studied assisting exploration
strategies in terms of exploring program states but also is more
practical to be enhanced. Accordingly, we propose CDFUZZ,
which generates a customized dictionary for each seed upon
the baseline fuzzer AFL to improve over the original dictionary
strategy. The evaluation results demonstrate that CDFUZZ in-
creases the edge coverage by 16.1% on average for all benchmark
projects over the best performer in our study (i.e., AFL++ with
the dictionary strategy). CDFUZZ also successfully exposed 37
previously unknown bugs, with nine confirmed and seven fixed
by the corresponding developers.

I. INTRODUCTION

Fuzzing has been widely adopted to expose the vulnerabil-
ities of software systems by producing invalid, unexpected, or

*Yuqun Zhang is the corresponding author.
‡These authors contributed equally.
†These authors are also affiliated with the Department of Computer Science

and Engineering, Southern University of Science and Technology, Shenzhen,
China. Mingyuan Wu is also affiliated with the University of Hong Kong,
Hong Kong, China.

random data as test inputs [1]. Particularly, given a collection
of seeds, grey-box fuzzers [2], [3], [4], [5] iteratively mutate
them for generating new seeds to optimize their exploration
on program states, i.e., executed code guarded by branch con-
ditions [6], via obtaining real-time coverage feedback based
on instrumenting target programs.

Although many grey-box fuzzers are effective in exploring
sufficient program states to expose software vulnerabilities,
they are still ineffective in exploring certain program states
(e.g., the ones guarded by equality constraints [7], [8], [9], [5])
unless developers design specific mutators for their own appli-
cations [10], [11]. To improve program state exploration, re-
searchers have proposed multiple assisting exploration strate-
gies which are usually implemented as an independent phase
in an existing fuzzer (e.g., implementing an SMT solver [12]
as a constraint-solving phase into AFL [2]) to assist general
grey-box fuzzers [13], [14], [15], [16] for exploring such
program states. To our best knowledge, there are four types
of assisting exploration strategies: (1) the dictionary strategy,
which enables a list of tokens that fuzzers can insert to
mutants to cope with the grammar-blind problem (i.e., gen-
erating input that may violate grammar) [14], (2) the input-to-
state correspondence strategy, which utilizes lightweight taint
tracking to monitor how input values are used at various states
during program execution. In this way, the correspondences
between the operands of a given instruction and the given
input can be derived to first identify the offsets via lightweight
taint tracking and then update their values for exploring the
associated program states [15], [17], (3) the SMT-solver-based
strategy, which leverages SMT solvers [12] to solve constraints
that satisfy complex branch conditions for exploring program
states (e.g., QSYM [18]), and (4) the gradient-based strategy,
which utilizes gradient descent [19] to solve constraints for
exploring program states (e.g., Angora [16]). Although these
strategies have been shown effective in their corresponding

papers, their evaluation can be potentially biased since they
seldom follow equivalent protocols, e.g., while Angora and
QSYM both use eight real-world projects in their original
evaluations, they only adopt two projects (objdump and file)
in common. Moreover, the evaluations of these strategies
focus mainly on the performance of the grey-box fuzzers
integrating the assisting exploration strategies as a whole
while neglecting the individual contributions of the strategies,
e.g., the specifics of their explored program states. Without
a thorough understanding of the explored program states by
these strategies, it is unclear how to further improve the
effectiveness of these strategies to assist grey-box fuzzers in
exploring deeper program states.

In this paper, we perform the first comprehensive study
to evaluate the assisting exploration strategies. Specifically,
we first collect nine recent fuzzers as our studied subjects
and construct a benchmark suite which consists of 21 open-
source real-world projects commonly studied by their original
papers. Then, we conduct an extensive evaluation where our
evaluation results suggest that the dictionary strategy achieves
quite similar and even slightly better performance over other
studied assisting exploration strategies, e.g., AFL activating the
dictionary strategy slightly outperforms the best-performing
SMT-solver-based fuzzer QSYM in terms of the average edge
coverage (5,094 vs. 5,067 explored edges). We observe that it
is also more practical to be enhanced by strategically selecting
tokens to form a dictionary for each seed.

Inspired by our study, we propose CDFUZZ (Customized
Dictionary Fuzzing), which customizes the dictionary by
strategically selecting tokens for each seed upon the baseline
fuzzer AFL [2]. Specifically, CDFUZZ derives the execution
path of each seed and extracts all its constant tokens in equality
constraints to generate a customized dictionary. Accordingly,
each of such tokens is inserted to a random seed offset to gen-
erate a mutant for the further fuzzing campaign. The evaluation
results indicate that under 24-hour evaluation, CDFUZZ can
outperform the best performer in our study (i.e., AFL++ [3]
activating the dictionary strategy) by 16.1% in terms of edge
coverage. CDFUZZ also exposed 37 previously unknown bugs
where 30 of them can only be exposed by CDFUZZ in our
evaluation (i.e., other evaluated fuzzers can only expose 7
of them within the given time limit). Specifically, nine of
them have been confirmed and seven have been fixed by the
corresponding developers. To summarize, this paper makes the
following contributions:

• To the best of our knowledge, we conduct the first
comprehensive study of nine representative fuzzers on the
performance impact of assisting exploration strategies on
top of a collection of real-world projects.

• Our study revealed that the dictionary strategy is most
promising because it not only achieves similar or even
slightly better performance over other studied strategies,
but also is more practical to be enhanced.

• We propose a lightweight approach CDFUZZ which cus-
tomizes the dictionary for each seed by strategically se-
lecting constant tokens. It outperforms the best performer

in our study by 16.1% in terms of edge coverage and
exposes 37 previously unknown bugs with nine confirmed
and seven fixed by the corresponding developers. All
experimental results and our tool is publicly available in
our GitHub repository [20].

II. BACKGROUND

A. Grey-box Fuzzing

Grey-box fuzzing [21] has become the major practice for
fuzzing. The objective of a grey-box fuzzer is to iteratively
explore the target program thoroughly for exposing poten-
tial vulnerabilities. We take the widely-used baseline fuzzer
American Fuzzy Lop (AFL) [2] to illustrate generic grey-box
fuzzers. First, AFL instruments the coverage tracking instruc-
tions into the target program in compilation time for collecting
coverage information. Next, it mutates seeds (i.e., inputs of
the target program) and executes the resulting mutants on
the instrumented program to obtain coverage information. If
such mutants explore new program states (i.e., increase code
coverage), AFL identifies such mutants as “interesting” seeds
and retains them for further exploration. The procedure above
is iterated throughout the entire fuzzing campaign. While
grey-box fuzzers can in general advance the exploration of
program states upon the explored program states progressively,
they have also been shown somewhat limited in exploring
the program states guarded by tight and complex branch
conditions (e.g., equality constraints) [18].

B. Assisting Exploration Strategies

Many assisting exploration strategies have been proposed to
assist grey-box fuzzers on exploring program states guarded by
tight and complex branch conditions [18] [16] [22] [15]. The
general workflow of integrating assisting exploration strategies
in grey-box fuzzers is shown in Figure 1 and illustrated as
follows:

Seed
Corpus

x = 0x𝚍𝚎𝚊𝚍𝚋𝚎𝚎𝚏
Identify

Variables

seed = 0x𝚏𝚏x0x𝚏𝚏
Locate Offset

from Seed

0x𝚏𝚏0x𝚍𝚎𝚊𝚍𝚋𝚎𝚎𝚏0x𝚏𝚏
Replace Offset

with Variable

Dictionary
Tokens

token = 0x𝚍𝚎𝚊𝚍𝚋𝚎𝚎𝚏
Random Select a

Token
Insert Token

into Seed

The Dictionary Strategy

Mutant

ProgramEdge
Coverage

Yes Trigger New
Edge?

No
Discard

Mutation 
(AFL)

Coordinator 
(Seed Selection)

Constraint
Solving Engine

The Input-to-state Strategy

The Constraint-solving Strategies

Fig. 1: The workflow of assisting exploration strategies

1) The dictionary strategy: The dictionary strategy either
adopts a set of user-defined tokens (so-called “dictionary”) or
generates tokens automatically by parsing the constant values
defined in the target program [23]. Such tokens are randomly
inserted into random seed offsets to generate mutants for the
further fuzzing campaign, expecting that certain tokens can be

inserted in the correct branch conditions of the target program
to advance the program state exploration. For example in Fig-
ure 1, to explore the equality constraint x == 0xdeadbeef,
the token 0xdeadbeef in the dictionary can be either given
by users or parsed from code. Next, the token 0xdeadbeef
is inserted to a random seed offset to generate a mutant. If
the token happens to be inserted in the offset of the input
corresponding to the righthand side of the equality constraint
x == 0xdeadbeef, i.e., the equality constraint is satisfied
by executing the mutant, its guarded program state can be
explored.

2) The input-to-state correspondence strategy: Since it is
likely that partial input can be stored in the memory or
registers at run time, the input-to-state correspondence strat-
egy derives the correspondence between such input and the
associated program state to facilitate fuzzing. Specifically, the
input-to-state correspondence strategy identifies the lefthand
and righthand side of a branch condition during runtime
via additional instrumentation. Next, it identifies which side
originated from the corresponding seed, and then locates its
offset via lightweight taint tracking. Furthermore, it updates
such offset with the value of the other side, i.e., generating a
mutant to be executed for satisfying the corresponding branch
condition such that its guarded program state can be explored.
For instance in Figure 1, given a branch condition x ==
0xdeadbeef, the input-to-state correspondence strategy first
identifies the value of x, and then traces the offset of x in the
seed. At last, x is updated with the value 0xdeadbeef in
the seed to generate a new mutant which is then input to the
target program for exploring the program states guarded by x
== 0xdeadbeef.

3) The constraint-solving strategies (the SMT-solver-based
strategy and the gradient-based strategy): Symbolic execution
[24] is widely used in grey-box fuzzers by leveraging full
taint tracking and constraint solving to generate seeds satis-
fying target branch conditions. In particular, the SMT-solver-
based strategy utilizes SMT-solver [12] and the gradient-based
strategy utilizes gradient descent [19] for solving constraints,
respectively. To illustrate, in Figure 1, the grey-box fuzzer
and the constraint-solving engine (i.e., the symbolic/concolic
execution engine or the gradient descent solver) are first
activated at the same time. Next, the grey-box fuzzer passes
its generated seeds to the constraint-solving engine which
leverages full taint tracking to derive constraints corresponding
to the seed inputs and solve them for exploring program states
guarded by tight and complex branch conditions. Meanwhile,
the constraint-solving engine also passes its generated seeds
to the grey-box fuzzer for the further fuzzing campaign [13].

Although all these strategies have been well evaluated in
their original papers, their evaluations can be potentially biased
because (1) they seldom follow identical protocols and (2) the
assessment of their individual contributions is rather obscure.
Thus, there is a pressing need to comprehensively study
the assisting exploration strategies to enlighten their future
development.

III. EMPIRICAL STUDY

A. Subjects & Benchmarks

1) Subjects: We aim at the grey-box fuzzers with assisting
exploration strategies as our study subjects. In particular, we
filter many such fuzzers for selecting the representative ones.
Following prior studies [13], [25], we first limit our search
scope to the fuzzers recently published in the top Software
Engineering and Security conferences (e.g., ICSE, FSE, CCS,
and S&P). Furthermore, we can only evaluate the fuzzers
which are publicly available and can be successfully executed.
Lastly, as it is rather challenging and time-consuming to
activate certain strategies, e.g., the dictionary strategy, in non-
AFL-based fuzzers, we only target AFL-based fuzzers.

Finally, we select nine representative fuzzers as our studied
subjects. Specifically, AFL [2], AFL++ [3], MOPT [4], and
FAIRFUZZ [5] represent the dictionary-based fuzzers (while
they deactivate the dictionary strategy option by default, it
can be easily activated as long as the associated tokens are
provided). QSYM [18], MEUZZ [26], and PANGOLIN [22]
represent the SMT-solver-based fuzzers. Angora [16] and
REDQUEEN [15] are typical gradient-based fuzzer and input-
to-state-correspondence-based fuzzer, respectively. Note that
REDQUEEN is implemented into AFL++ (which is maintained
by Google) as the REDQUEEN mode [27] and thus we choose
it as the representative fuzzer of input-to-state correspondence
strategy following prior work [28].

2) Benchmark suite: Following prior work [13], we con-
struct our benchmark suite based on the projects commonly
adopted by the original papers of the selected fuzzers [3],
[4], [5], [15], [16], [18]. To ensure general applicability
of our study, we additionally adopt seven projects from
FuzzBench [29], resulting in a total of 21 real-world projects.
In particular, we select 14 frequently used projects out of
the papers to form our benchmark suite. More specifically,
we first select seven projects that are adopted by at least
three papers. Then, we randomly select another seven projects
which are adopted by one or two papers. The selection details
are presented in our GitHub page [20]. Table I presents the
statistics of our benchmark suite. Specifically, we consider
our benchmark to be sufficient and representative due to the
following reasons:

1) These 21 benchmark projects cover ten different file
formats for seed inputs, e.g., ELF, XML, JPEG, and
JSON;

2) The sizes of these programs that range from 1,885 to
over 150K lines of code (LoC) can represent a wide
range of programs in practice;

3) They are all open-source real-world programs from
different vendors with various code logic.

4) They cover diverse functionalities including develop-
ment tools (e.g., readelf, objdump), xml processing tools
(e.g., xmlwf), network analysis tools (e.g., tcpdump),
graphics processing tools (e.g., djpeg), etc.

TABLE I: Statistics of the studied benchmarks
Programs LOCPackage Target Commit/Version Class

readelf 2.40 ELF 72,164
nm 2.40 ELF 55,307

binutils objdump 2.40 ELF 74,532
size 2.40 ELF 54,429
strip 2.40 ELF 65,432

libjpeg djpeg 9c JPEG 9,023
tcpdump tcpdump 4.99.0 PCAP 46,892
libxml2 xmllint 2.9.12 XML 73,320
jhead jhead 3.04 JPEG 1,885
libpng pngfix 1.6.36 PNG 12,173
libtiff tiffinfo 4.2.0 TIFF 15,140
expat xmlwf 2.4.8 XML 6,871
libtiff tiff2bw 4.2.0 TIFF 15,024
mupdf mutool 1.18.0 PDF 123,575
libjpeg-turbo∗ libjpeg-turbo 3b19db JPEG 11,106
libpng∗ libpng cd0ea2 PNG 31,054
libxml2∗ libxml2 c7260a XML 104,019
re2∗ re2 b025c6 REGEX 17,754
jsoncpp∗ jsoncpp 8190e0 JSON 4,181
sqlite3∗ sqlite3 c78cbf SQL 95,815
bloaty∗ bloaty 52948c ELF 152,845
∗ These benchmark packages come from FuzzBench [29].

B. Environment Setup and Implementation

Our evaluation was conducted on the ESC servers with
128-core 2.6 GHz AMD EPYC™ ROME 7H12 CPUs and
256 GB RAM. The servers run on Linux 4.15.0-147-generic
64-bit Ubuntu 18.04. We strictly follow the respective orig-
inal procedures of the studied fuzzers when executing them.
Specifically, to allow the fuzzers to generate more tests, we
set the execution time budget for all the experiments 24 hours.
Meanwhile, as all fuzzers rely on randomized algorithms, we
run each experiment five times to obtain the average result,
following prior evaluations [28], [26], [16]. Notably, since all
the studied fuzzers are AFL-based, we apply the AFL (v2.57b,
which is the latest released version in GitHub) llvm-mode
(LLVM-13) to instrument the source code during compilation
and LLVM IR [30] for presenting and analyzing programs. At
last, we collect the initial seed corpus following prior work [5],
[9], [22], [31], [32].

We adopt edge coverage to measure code coverage where
an edge refers to a transition between program blocks, e.g., a
conditional jump, following prior work [6], [22]. Specifically,
we compute edge coverage via the unique edge number de-
rived by the AFL built-in tool named afl-showmap, which
has been widely used by many existing fuzzers [4], [16], [22],
[28], [33], [34].
Constructing Dictionary versions via FuzzingDriver. To
form dictionaries for all studied fuzzers involving dictionary
strategy [35], [23], we automatically extract tokens using the
most recent FuzzingDriver [23] instead of relying on user-
provided tokens to reduce potential bias. Specifically, Fuzzing-
Driver is designed to automatically generate dictionaries for
each program, leveraging CodeQL [36] to extract key pieces
of information from the target program’s internals, includ-
ing commonly occurring keywords, strings, and constants.
Moreover, it employs a data cleaning module that scrutinizes
extracted tokens to customize the dictionary for enhancing the

efficiency of the fuzzing process. 1

C. Research Questions

We investigate the following research questions in our study:
• RQ1: How well do different assisting exploration strate-

gies perform on our benchmark suite?
• RQ2: What are the specifics of program states explored

by assisting exploration strategies?
• RQ3: What are the potential obstacles of different assist-

ing exploration strategies?

D. Result Analysis

1) RQ1: Effectiveness of the studied fuzzers: Table II shows
the edge coverage results of all studied fuzzers where the
numbers show the coverage results averaged over multiple
runs (i.e., five times). The “Orig” column denotes the original
implementation of the grey-box fuzzers which deactivates the
dictionary strategy and “Dict” denotes the grey-box fuzzers
activating the dictionary strategy (represented as “FuzzerDict”
in this paper). In general, we can observe that all FuzzerDicts
outperform all original grey-box fuzzers in terms of the aver-
age edge coverage by 7.9% to 10.9%, e.g., AFLDict explores
10.1% more edges than AFL (5,094 vs. 4,626 explored edges).
Moreover, we also observe that QSYM, MEUZZ, PANGOLIN,
Angora and REDQUEEN outperform the best-performing grey-
box fuzzer, i.e., AFL++, by 4.7% in terms of the average
edge coverage. As all the studied subjects are AFL-based,
we can derive that both input-to-state correspondence strategy
and constraint-solver-based strategies can somewhat advance
the exploration of program states over the original grey-box
fuzzers. However, we can also observe that the performance
advantage is limited and may not well generalize in dif-
ferent benchmark projects. For instance, the best-performing
constraint-solving-based fuzzer QSYM outperforms AFL++ in
11 projects by 3.5% (6,968 vs. 6,733 explored edges in strip)
to 4.6× (731 vs. 159 explored edges in jhead), while AFL++
outperforms QSYM in the remaining ten projects by 1.2%
(6,456 vs. 6,379 explored edges in re2) to 23.2% (6,178 vs.
5,013 explored edges in sqlite3). We also perform the Mann-
Whitney U test [37] to demonstrate the significance of fuzzers
that adopting assisting exploration strategies compared to the
grey-box fuzzer AFL. The p-value of less than 0.05 for AFL
compared to AFLDict, QSYM, and REDQUEEN in terms of
average edge coverage indicates that fuzzers adopting assisting
exploration strategies significantly outperform the grey-box
fuzzer AFL.

Interestingly, we further observe from Table II that the
dictionary-based fuzzers can potentially achieve similar or
even slightly better performance over other studied fuzzers.
For instance, AFLDict outperforms QSYM by 0.5% (5,094 vs.
5,067 explored edges) on average. Since AFLDict and QSYM
only differ in their adopted assisting exploration strategies, it
indicates that the dictionary strategy is close to or potentially

1Note that FuzzingDriver is not an independent fuzzer but just a tool for
extracting tokens to generate dictionaries for fuzzers, we cannot adopt it as
an independent baseline in our evaluation.

TABLE II: The average edge coverage result of studied programs
Benchmark AFL AFL++ FAIRFUZZ MOPT QSYM MEUZZ PANGOLIN Angora REDQUEEN

Orig Dict* Orig Dict* Orig Dict* Orig Dict*
readelf 10,081 11,561 10,562 11,524 11,065 10,954 11,034 11,757 11,386 12,136 11,437 13,203 10,053
nm 4,973 5,199 5,651 5,270 4,877 4,830 4,966 5,580 6,532 5,527 6,394 5,774 5,526
objdump 5,519 5,649 5,666 5,744 5,451 6,108 5,518 5,760 5,999 5,832 5,593 5,863 5,587
size 3,604 3,800 4,010 4,015 3,532 3,551 3,477 3,618 5,211 4,151 5,045 5,201 5,002
strip 6,216 6,369 6,733 6,598 6,103 5,714 5,895 6,210 6,968 6,634 6,741 5,943 5,513
djpeg 2,319 2,801 2,542 2,628 2,446 2,798 2,304 2,826 2,092 2,184 2,238 2,936 2,463
tcpdump 10,932 12,001 11,240 12,554 11,646 13,315 9,409 12,051 10,053 10,117 10,843 9,502 11,471
xmllint 6,474 6,862 6,724 6,824 6,458 6,599 6,389 6,686 6,317 6,225 5,981 4,273 6,771
jhead 156 801 159 772 156 795 157 728 731 622 331 157 612
pngfix 1,123 2,237 975 1,983 998 2,023 986 2,020 1,976 2,252 1,903 2,161 2,189
tiffinfo 3,683 3,831 4,026 4,209 3,655 3,731 3,486 3,760 3,753 3,713 3,657 4,190 3,981
xmlwf 5,024 4,990 4,935 4,953 4,985 4,993 4,567 5,025 4,797 4,498 5,001 5,132 4,879
tiff2bw 3,112 3,503 3,198 3,478 3,531 3,663 3,102 3,429 2,871 3,014 3,128 3,028 3,615
mutool 2,207 2,252 2,260 2,295 2,216 2,215 2,198 2,270 2,167 2,147 2,194 2,204 2,314
libjpeg-turbo 4,462 4,596 4,178 4,997 4,900 4,905 4,997 4,997 4,722 4,641 4,785 4,772 4,554
libpng 887 2,092 884 2,263 1,080 2,232 1,081 2,232 2,080 1,899 2,041 1,930 2,014
libxml2 9,608 9,621 9,996 11,267 8,075 8,160 9,512 9,512 10,355 9,981 10,213 9,142 9,001
re2 6,458 6,465 6,456 6,466 6,419 6,464 6,391 6,469 6,379 6,192 6,341 6,409 6,362
jsoncpp 1,452 1,455 1,451 1,454 1,451 1,455 1,451 1,457 1,406 1,404 1,420 1,379 1,444
sqlite3 6,817 7,989 6,178 6,286 6,737 7,925 7,975 8,021 5,013 4,812 5,143 3,612 5,588
bloaty 2,043 2,909 1,912 3,514 1,912 2,989 1,980 3,052 5,595 5,621 5,014 5,410 5,279
Average 4,626 5,094 4,749 5,195 4,652 5,020 4,613 5,117 5,067 4,933 5,021 4,868 4,963
p-value - 0.006 0.005 0.005 0.005 0.006 0.006 0.005 0.006 0.005 0.005 0.005 0.006

*Dictionaries of FuzzerDicts are all generated by FuzzingDriver [23].

more effective than the SMT-solver-based strategy. Such in-
dications can be generalized when comparing the dictionary
strategy with other assisting exploration strategies. Therefore,
we can infer that the dictionary-based fuzzers are effective
solutions in exploring program states.

Finding 1:The dictionary-based fuzzers achieve similar
or even slightly better performance over other studied
fuzzers, indicating that the dictionary strategy is rather
effective.

2) RQ2: Specifics of the explored program states: In this
paper, we characterize a constraint as a predicate that is
represented as the edge between two basic blocks [38] in the
control-flow graph (CFG). To reach a given program state, all
its guarded constraints should be satisfied. We thus represent
each program state by an ordered sequence of its guarded
constraints, i.e., a sequence of branch conditions which guard
the corresponding basic blocks. In particular, we consider the
following two types of constraints based on LLVM IR: (1) an
equality constraint denotes equality comparisons at the source
code level (e.g., ==), which correspond to one Jump Equal
instruction or Jump not Equal instruction [39] following [40];
(2) otherwise, it is referred to as a non-equality constraint.

Our goal is to find out which constraint in the ordered
sequence of a program state is critical to be satisfied by
grey-box fuzzers. Particularly, given a program state rep-
resented as the ordered sequence of its guard constraints
c1, c2, ..., ck, ck+1, ..., cn where c1, ..., ck are satisfiable and
ck+1 is unsatisfiable, we consider the first unsatisfiable con-
straint (i.e., ck+1) to be critical since it prevents the remaining
unsatisfied constraints (ck+1, ..., cn) from being explored.

We first investigate the specifics of the program states
which can be explored by the fuzzers with assisting explo-
ration strategies other than the grey-box fuzzers to reflect the
improvement that the assisting exploration strategies brings
to grey-box fuzzers. Specifically, we collect the unexplored
program states (denoted as S) by applying the grey-box

fuzzers. We then filter out the ones which cannot be explored
by any fuzzer with assisting exploration strategies. Finally,
we derive the critical constraints from the remaining program
states for further analysis. We observe that the majority of the
constraints which can be explored by the fuzzers integrating
assisting exploration strategies but cannot be explored by
their corresponding grey-box fuzzers are equality constraints.
Figure 2 presents the ratios of the total number of equality

constraints to the total number of critical constraints. For ex-
ample, 98.1% of the critical constraints explored by AFLDict,
97.4% by AFL++Dict, and 93.1% by QSYM, but not by their
corresponding grey-box fuzzers, are equality constraints.

Finding 2: The assisting exploration strategies bring im-
provement over grey-box fuzzers by effectively exploring
program states guarded by equality constraints.

AFL

AFL++

FairFuzz

MOPT

QSYM

Meuzz

Pangolin

Angora

RedQueen

Ratio(%)

0 25 50 75 100

97.5

89.2

93.3

91.2

93.1

96.4

98.3

97.4

98.1Dict

Dict

Dict

Dict

Fig. 2: Ratios of the total number of equality constraints
to the total number of unsatisfiable critical constraints

We further investigate the characteristics for the unexplored
program states by FuzzerOrigs. Note that all these program
states are guarded by equality constraints and can be explored
by either dictionary strategy, input-to-state correspondence
strategy, or constraint-solver-based strategies. Specifically, we

use a semi-automated approach to analyze the program state
characteristics guarded by equality constraints: (1) our script
first automatically extracts equality constraints, and then (2)
we manually identify common characteristics among these
equality constraints. Surprisingly, we find that 92.3% of these
unexplored equality constraints share the same form as input
[==|!=] CONSTANT (e.g., function memcmp(input,
CONSTANT) or switch(input){case CONSTANT}) af-
ter compilation, i.e., taking the content directly from the
input to compare with a predefined constant value (constant-
evaluating equality constraints).

Finding 3: The constraints explored by dictionary strat-
egy and other studied strategies are mostly constant-
evaluating equality constraints.

3) RQ3: The obstacles of different strategies: Our previ-
ous findings indicate that all assisting exploration strategies
achieve similar edge coverage performance. We then discuss
the potential obstacles for their future development to under-
stand which strategy is more practical to be enhanced for better
exploring the program states guarded by tight and complex
branch conditions.

0.00

0.25

0.50

0.75

1.00

re
ad
elf nm

ob
jdu

m
p

siz
e
str

ip
djp

eg

tc
pd
um

p

xm
llin

t
jhe

ad

pn
gfi
x

tif
fin

fo
xm

lw
f

tif
f2b

w

m
ut
oo

l

lib
jpe

g-t
ur
bo

lib
pn
g

lib
xm

l2 re
2

jso
nc
pp

sq
lit
e3

blo
at
y

Execution Time Ratio
Explored Edge Ratio

Ra
ti
o

Fig. 3: Ratios of the execution time and explored edges of
the input-to-state correspondence strategy

Input-to-State Correspondence Strategy. For the input-to-
state correspondence strategy, we first investigate its poten-
tial effect by studying the input-to-state-correspondence-based
fuzzer, i.e., REDQUEEN. Apart from input-to-state correspon-
dence strategy, REDQUEEN also includes other strategies (e.g.,
the havoc strategy). We then investigate the ratio of the
execution time of the input-to-state correspondence strategy to
the overall execution time budget (i.e., 24 hours) for studying
its effectiveness, as in Figure 3. We can observe considerable
variations on the execution time of the input-to-state corre-
spondence strategy across different benchmarks. For instance,
in readelf, nm, and strip, its execution exceeds 20 hours. On
the contrary, in jhead and xmlwf, its execution lasts merely less
than one hour. Meanwhile, Figure 3 also presents the ratio
of the edges explored by the input-to-state correspondence
strategy to the overall explored edges. It is surprising to
see that executing the input-to-state correspondence strategy
longer does not necessarily explore more edges, e.g., executing
21 hours but only exploring 21.5% edges in readelf, indicating

that the adopted mechanisms (e.g., lightweight taint analysis)
in the input-to-state correspondence strategy can incur perfor-
mance issues in certain benchmark projects. We further infer
that its development may be hindered by the inaccuracies of its
adopted lightweight taint tracking. To illustrate, we manually
analyze 10% (271) of constant-evaluating equality constraints
which REDQUEEN fails to explore in our evaluation. We ob-
serve that although it successfully detected the corresponding
constant values for these equality constraints, its lightweight
taint analysis failed to locate their corresponding offsets in the
seeds. Figure 4 presents one such example from xmllint where
REDQUEEN successfully obtains the constant value but it fails
to locate its offset corresponding to CUR_PTR in the seed.
Therefore, the equality constraint at line 3 cannot be satisfied,
and REDQUEEN fails to explore its guarded program states.

Finding 4: The input-to-state correspondence strategy
could potentially trigger performance issues in certain
benchmarks while also running the risk of inaccuracies
in locating correct offsets.

1 void xmlParseNotationDecl(xmlParserCtxtPtr ctxt) {
2 // CMP10 checks if the first 10 characters of a string 's'

match the 10 provided characters (c1 to c10).

3 if(CMP10(CUR_PTR,'<','!','N','O','T','A','T','I','O','N'))

{
4 // ...
5 }}

Fig. 4: An input-to-state fuzzing strategy failure case in
xmllint parser.c

1 if (alias != XML_CHAR_ENCODING_ERROR) {
2 const char* canon;
3 // The return value of xmlGetCharEncodingName is
4 // determined by a switch statement
5 canon = xmlGetCharEncodingName(alias);

6 if ((canon != NULL) && (strcmp(name, canon))) {

7 return(xmlFindCharEncodingHandler(canon));
8 }}
9

Fig. 5: A case in xmllint encoding.c

Constraint-Solver-based Strategies. For the constraint-
solver-based strategies (i.e., the SMT-solver-based strategy and
the gradient-based strategy), we infer that although they can
advance the exploration of program states to some extent, their
effectiveness can nevertheless be compromised when exploring
program states guarded by certain complex and tight branch
conditions. Notably, the constraint-solver-based fuzzers fail to
explore many program states guarded by equality constraints
which can otherwise be explored by FuzzerDicts. For example
in Figure 5, only the FuzzerDicts can explore the condition
in line 6 (canon != NULL) && ...) in our study. To
investigate how the performance of the constraint-solver-based
strategies correlates with the specifics of program states, we
first characterize the “depth” of constraints. As the constraint
ck+1 can be reached if and only if the conjunction of its
all dependent constraints c1 ∧ c2 ∧ ... ∧ ck is satisfied, we

thus compute the “depth” for constraints ck+1 as the size
k of the conjunction of its dependent constraints. Figure 6
demonstrates the success rate of solving constraints at differ-
ent depths by applying the constraint-solver-based strategies,
where “successful solving” refers to that a constraint-solver
finds a satisfiable solution for these constraints. We observe
that for all constraint-solver-based fuzzers, the success rate
significantly decreases as the depth approaches 20, e.g., QSYM
has 23.6% success rate when the depth reaches 10 while only
15.0% when reaching 20.

Finding 5: Although constraint-solver-based strategies
may potentially explore tight and complex constraints,
it still becomes less effective when solving deeper con-
straints.

0

0.25

0.5

0.75

1

1 20 40 60 80 100

QSYM
MEUZZ
Angora
Pangolin

Depth of Constraints

Su
cc

es
s

Ra
te

Fig. 6: The success rates of solving constraints at different
depths

Dictionary Strategy. We then investigate the potential ob-
stacles which may hinder the future development of the
dictionary strategy. Interestingly, we observe that although
the FuzzerDicts can slightly outperform the fuzzers with
other assisting exploration strategies in terms of the average
edge coverage, they fail to achieve consistent performance
advantages in each benchmark project. For instance, QSYM
and Angora outperform the best performer of FuzzerDicts, i.e.,
AFL++Dict, in nine benchmark projects by 2.1% to 59.2%.
We thus infer that the power of the dictionary strategy has
not been fully exploited, i.e., randomly selecting tokens to
form a dictionary may be essentially deficient. To validate this
hypothesis, we set out to evaluate what performance impact
can be caused by strategically selecting the tokens to form a
dictionary. Specifically, we first randomly selected 10% (268)
of equality constraints out of our benchmark suite which can
be explored by the fuzzers with all the assisting exploration
strategies other than the dictionary strategy. Next, for an edge
in CFG corresponding to the failed exploration on an equality
constraint (e.g., the False edge from memcmp(input,
"8BIM") in Figure 7) when running a seed (e.g., s1 in
Figure 7), we identify its “sibling” edges (i.e., edges under one
shared prefix edge defined in [34], such as the True edge from
memcmp(input, "8BIM") in Figure 7). Accordingly, we

only collect the associated constant tokens (e.g., "8BIM") and
add them into the dictionary of the seed such that it can be
randomly inserted to its offsets. At last, we apply AFL++Dict

to run the target program. As a result, 93.7% (251) of such
equality constraints can be explored by AFL++Dict in three
hours, indicating that strategically selecting tokens to form a
dictionary can advance the exploration of the program states
guarded by equality constraints.

Finding 6: The exploration of program states guarded by
the equality constraints can be enhanced by strategically
choosing tokens to form a customized dictionary.

memcmp(input, "Photoshop 3.0")

void show_IPTC(...)

False

badsig: ErrNonfatal("...")

memcmp(input, "8BIM")

False

...

True

True

Dictionary

"Photoshop 3.0"

"8BIM"

"..."

Seed s1

Fig. 7: Strategically building a dictionary for exploring
jhead iptc.c

E. Discussion

As assisting exploration strategies have been shown to be
powerful and yet limited in our study, we then discuss how we
could potentially enhance assisting exploration strategies for
advancing program state exploration in practice, which essen-
tially demands being lightweight. While it has been widely
recognized that improving the taint analysis and constraint
solvers can be typically heavyweight to cause potentially
excessive efforts [15], [41], [42], strategically selecting tokens
to form a dictionary for the dictionary strategy is likely to be
lightweight and more practical. Note that while ideally, accu-
rately tracking the offsets of seeds to insert the correct tokens
can further improve the effectiveness of the dictionary strategy,
it is nevertheless heavyweight as presented in prior work [15],
[41], [42]. We thus do not consider accurately tracking the
seed offsets to improve over the dictionary strategy.

IV. CUSTOMIZED DICTIONARY FUZZING

Motivated by our previous findings, we propose CDFUZZ
(Customized Dictionary Fuzzing) which builds upon the base-
line fuzzer AFL a customized dictionary for each seed by
accurately selecting tokens.

A. Approach

Figure 8 presents the workflow of CDFUZZ. For each seed
in the seed corpus, CDFUZZ first derives its execution path,
and then extracts all its constant tokens in equality constraints
to form a dictionary for the seed. Next, CDFUZZ randomly
selects a token from the dictionary and inserts it into a random

Program
Dicts

in == token?

ExploredUnexplored

Sibling
Edge

Seed
Seed

Corpus

token ...

Mutant
Edge

Coverage

Yes Trigger New
Edge?

No
Discard

Execute
Program

Get Execution
Path&.CFG Get Constant Token

{..., token, ...}

Random Selection Random Insertion

Fig. 8: The workflow of CDFUZZ

Algorithm 1 Customized Dictionary Fuzzing

Input: initialSeed, budget

Output: seedCorpus

1: function CUSTOMIZEDDICTIONARYFUZZING
2: CFG ← getCFGFromTargetProgram()
3: tokens ← getConstantTokensFromCFG(CFG)
4: path ← getPathBySeed(initialSeed, CFG)
5: dict ← getValidToken(tokens, path, CFG)
6: dicts ← [[initialSeed ⇒ {dict}]]
7: seedCorpus ← {initialSeed}
8: while fuzzing time not exceed budget do
9: for each seed in seedCorpus do

10: sDict ← dicts[[seed]]
11: token ← randomSelection(sDict)
12: mutant ← randomInsertion(seed, token)
13: if mutant has new edges then
14: seedCorpus ← seedCorpus ∪ {mutant}
15: muPath ← getPathBySeed(mutant, CFG)
16: muDict ← getValidToken(tokens, muPath, CFG)
17: dicts[[mutant]] ← muDict
18: return seedCorpus

offset to generate a mutant. If running such a mutant upon the
target program increases edge coverage, it will be added to
the seed corpus.

Instead of maintaining an overall dictionary as in prior
dictionary-based approaches [2], [3], [4], [5] , CDFUZZ gener-
ates a customized dictionary for each seed input. Our intuition
is that having a separate dictionary for each seed will (1) allow
easier tracking and effective selection of relevant tokens for
each seed, and (2) avoid polluting or overloading the dictionary
with tokens from other seeds. Algorithm 1 presents the work-
flow of CDFUZZ, which takes an initialSeed as input,
and performs fuzzing with a given time budget. First, we
parse the control-flow graph of the target program CFG and its
corresponding constant tokens following previous work [23]
(lines 2–3). Next, we initialize the seed corpus seedCorpus
by parsing all the constant tokens extracted from the equality
constraints of the executed path path of initialSeed
via the getValidToken function. Specifically, this function
extracts constant tokens from the “sibling” edges out of all
the edges corresponding to failed exploration on equality

TABLE III: The edge coverage results of CDFUZZ
Benchmark AFLDict AFL++Dict QSYM REDQUEEN CDFUZZ
readelf 11,561 11,524 11,386 10,053 13,276
nm 5,199 5,270 6,532 5,526 6,719
objdump 5,649 5,744 5,999 5,587 6,539
size 3,800 4,015 5,211 5,002 5,048
strip 6,369 6,598 6,968 5,513 8,327
djpeg 2,801 2,628 2,092 2,463 2,874
tcpdump 12,001 12,554 10,053 11,471 14,744
xmllint 6,862 6,824 6,317 6,771 7,830
jhead 801 772 731 612 865
pngfix 2,237 1,983 1,976 2,189 2,342
tiffinfo 3,831 4,209 3,753 3,981 4,521
xmlwf 4,990 4,953 4,797 4,879 4,980
tiff2bw 3,503 3,478 2,871 3,615 4,728
mutool 2,252 2,295 2,167 2,314 2,333
libjpeg-turbo 4,596 4,997 4,722 4,554 5,001
libpng 2,092 2,263 2,080 2,014 2,264
libxml2 9,621 11,267 10,355 9,001 12,398
re2 6,465 6,466 6,379 6,362 6,470
jsoncpp 1,455 1,454 1,406 1,444 1,459
sqlite3 7,989 6,286 5,013 5,588 8,209
bloaty 2,909 3,514 5,595 5,279 5,771
Average 5,094 5,195 5,067 4,963 6,033
p-value 0.005 0.005 0.005 0.005 -

constraints of path. In this way, we form a customized
dictionary for initialSeed with the collected tokens. For
each seed, CDFUZZ generates a mutant for exploring new
program states. To avoid inserting irrelevant tokens into the
seedCorpus, we only select tokens from the customized
dictionary of such seed to generate a mutant (lines 10–12).
Meanwhile, if running such a mutant successfully explores
new program states, we add it to seedCorpus for further
exploration (lines 13–14). Similarly, we generate a customized
dictionary for this mutant by parsing the constant tokens
according to its executed path (lines 15–17). For example,
assuming that running a seed presented in Figure 7 fails to
satisfy the equality constraint memcmp(input, "8BIM"),
CDFUZZ then identifies the associated constraint-solving con-
stant token "8BIM" while filtering out other irrelevant tokens
(e.g., "Photoshop 3.0") to customize a dictionary for
further mutations.

B. Evaluation

To evaluate CDFUZZ, we include the best-performing
dictionary-based fuzzer AFL++Dict and constraint-solver-
based fuzzer QSYM as well as the input-to-state correspon-
dence fuzzer REDQUEEN for performance comparison. We
also include AFLDict to assess the effectiveness of the cus-
tomized dictionary by CDFUZZ since they only differ in the
adopted dictionaries. Similar to the setup in Section III-B, we
run each experiment five times to obtain the average result
within 24 hours. Note that the dictionary for each seed is built
on-the-fly so the time cost is included in the overall running
time (24 hours). Prior to running Algorithm 1, CDFUZZ first
builds CFG and collects constant tokens (this process only
incurs roughly 10 seconds overhead per benchmark which
is minimal compared to afl-clang-fast). We further
present the details of compilation cost in our GitHub page [20]
due to the page limit.

1) Result and analysis: Table III presents the edge coverage
results of the studied approaches on top of all the benchmark
projects. In general, by only differing the adopted dictionar-
ies, CDFUZZ significantly outperforms AFLDict by 18.4%

(6,033 vs. 5,094 explored edges), indicating the effectiveness
of our proposed customized dictionary. Moreover, CDFUZZ
outperforms AFL++Dict by 16.1% (6,033 vs. 5,195 explored
edges), QSYM by 19.1% (6,033 vs. 5,067 explored edges),
and REDQUEEN by 21.6% (6,033 vs. 4,963 explored edges)
averagely. The results suggest that CDFUZZ can significantly
improve the effectiveness of the dictionary strategy. We also
perform the Mann-Whitney U test [37] to illustrate the sig-
nificance of CDFUZZ. The fact that the p-value of CDFUZZ
comparing with AFLDict in terms of the average edge cover-
age is 0.00503 indicates that CDFUZZ outperforms AFLDict

significantly (p < 0.05).

AFL

AFL++

QSYM

RedQueen

CDFuzz

Explored Equality Constraints

0 5000 10000 15000 20000

16,145
12,108
12,484
13,184

11,640Dict

Dict

Fig. 9: The explored equality constraints of each studied
fuzzer

We further investigate how the fuzzers perform on exploring
equality constraints, as in Figure 9. Specifically, CDFUZZ
outperforms the runner-up performer QSYM by 29.3% in terms
of exploring equality constraints (16,145 vs. 12,484). The
results indicate that CDFUZZ can significantly improve the
power of exploring equality constraints for grey-box fuzzing.

Figure 10 presents the edge coverage trends of the studied
approaches in each benchmark within 24 hours. Overall,
CDFUZZ outperforms all studied fuzzers significantly in most
of the benchmarks (except xmlwf, and size). Specifically,
CDFUZZ outperforms the best-performing AFL++Dict of our
study in all benchmark projects in terms of edge coverage,
e.g., CDFUZZ outperforms AFL++Dict by 26.2% in strip.
Moreover, although AFLDict and QSYM achieve higher edge
coverage than CDFUZZ in xmlwf, and size respectively, their
performance gaps are rather limited, i.e., CDFUZZ underper-
forms AFLDict in xmlwf by 0.2%, and QSYM in size by 3.1%.
Such results altogether indicate that CDFUZZ can achieve
quite robust edge coverage performance.

2) Bug finding capability for bugs in the wild: To evaluate
the bug-finding capability, we apply CDFUZZ on our original
benchmark suite and randomly select 10 additional real-world
open-source projects (stars > 100) from GitHub following
prior evaluations [28], [15], [43], [3]. We also include all the
grey-box fuzzers with dictionary strategy and QSYM, MEUZZ,
PANGOLIN, Angora, REDQUEEN in the evaluation of bug
finding capacity. To identify unique bugs, we first compile
the selected projects with two additional sanitizers [44], [45]
to trigger crashes as possible. Next, we derive the unique
crashes based on whether they incur unique execution paths
following existing work [2], [3], [46], [4], [16], [31], [5].
Finally, we manually analyze each unique crash to derive
unique bugs. All bugs are categorized based on their root

TABLE IV: The unique bugs explored by CDFUZZ
Project Bug Type Number Status
bison Use-of-uninitialized-value 1 reported
objdump Infinite loop 1 confirmed and fixed
bsdtar Use-of-uninitialized-value 1 reported
jasper Assertion failure 1 confirmed and fixed
lou translation Infinite loop 1 confirmed and fixed
libtiff Use-of-uninitialized-value 7 reported
objcopy Use-of-uninitialized-value 1 confirmed and fixed
jhead Use-of-uninitialized-value 6 reported
precomp Bad-malloc 1 reported
nm Memory leaked 1 confirmed

zziplib Stack buffer overflow 1 reported
Stack buffer overflow 1 reported

jpeginfo Heap-buffer-overflow 1 confirmed and fixed
Use-of-uninitialized-value 1 confirmed

cmix
Alloc-dealloc-mismatch 1 confirmed and fixed
Memcpy-param-overlap 1 confirmed and fixed
Use-of-uninitialized-value 1 reported

bento4

Allocation-size-too-big 1 reported
Out-of-memory 2 reported
Memory leaked 1 reported
Heap-buffer-overflow 3 reported
Segmentation fault 1 reported
Heap-use-after-free 1 reported

causes (their details are available in our GitHub page [20]).
Table IV presents the unique bugs exposed by our approach.
CDFUZZ has exposed 37 previously unknown bugs where 30
of them cannot be exposed by other studied fuzzers within the
given time limit. Moreover, nine of them have been confirmed
and seven have been fixed by the corresponding developers.
The results suggest that CDFUZZ is more effective than other
fuzzers in terms of exposing real-world bugs. In particular,
we list two examples of the exposed bugs below to illustrate
the importance of the bugs found by CDFUZZ. We also
demonstrate the details of all exposed bugs in our GitHub
page [20] with their report links due to page limit.
Heap-buffer-overflow bug in project jpeginfo. Figure 11
shows the code snippet for a heap-buffer-overflow bug
in project jpeginfo, where in line 9, six bytes from
EXIF_IDENT_STRING are copied to cmarker->data
without any length checking, leading to a buffer overflow. To
expose this bug, the equality constraint cmarker->marker
== EXIF_JPEG_MARKER should be satisfied. In our eval-
uation, only CDFUZZ reaches the branch guarded by such
equality constraint. The developer fixed the bug [47] by adding
buffer length checking statements from line 7 to line 8. They
also replied to our bug report as follows:

“Thanks, looks like memcmp() may have read past end
of the buffer in some circumstances.”

Memcpy-param-overlap bug in project cmix. We have also
reported a memory-overlapping bug in cmix only exposed
by CDFUZZ. The corresponding developers have fixed this
bug after receiving our report [48]. Figure 12 shows the
corresponding buggy code snippet where in line 7, the mem-
ory content is copied from source W->Letters[i+2] to
sink W->Letters[i+1] via memcpy. As the source and
sink addresses differ by a single byte, it causes potential

Fig. 10: Edge coverage of CDFUZZ over time

1 #define EXIF_JPEG_MARKER JPEG_APP0+1
2 #define EXIF_IDENT_STRING "Exif\000\000"

3 [+] #define EXIF_IDENT_STRING_LEN 6
4 ...
5 while (cmarker) {

6 [-] if (cmarker->marker == EXIF_JPEG_MARKER)

7 [+] if (cmarker->marker == EXIF_JPEG_MARKER &&

8 cmarker->data_length >= EXIF_IDENT_STRING_LEN)

9 if (!memcmp(cmarker->data,EXIF_IDENT_STRING,6))
10 exif_marker = cmarker;
11 cmarker = cmarker->next;
12 }

Fig. 11: A heap-buffer-overflow bug in jpeginfo

1 void ConvertUTF8(Word *W) {
2 for (int I = W->Start; i < W->End; i++) {
3 U8 c = W->Letters[i+1] + ((W->Letters[i+1]<0xA0)?0

x60:0x40);
4 if (W->Letters[I] == 0xC3 && (IsVowel(c) ∥ (W->

Letters[i+1]&0xDF) == 0x87)) {
5 W->Letters[i] = c;
6 if (i+1 < W->End)
7

[-] memcpy(&W->Letters[i+1], &W->Letters[i+2],

8 W->End-i-1) ;
9

[+] memmove(&W->Letters[i+1], &W->Letters[i+2],

10 W->End-i-1) ;
11 W->End--;
12 }}}

Fig. 12: A memcpy-param-overlap bug in cmix

overlapped memory, i.e., an undefined behavior in C/C++
programming. The function memcpy does not guarantee
proper handling of overlapping memory regions. In contrast,
memmove ensures accurate data replication in such cases. In
our evaluation, only CDFUZZ generates seeds that expose
this defect by satisfying the equality constraint in line 4, i.e.,
W->Letters[i]==0xC3 and IsVowel(c). The develop-
ers also commented on our report:

“Thanks for the bug report, and the suggested fix!
Changing to memmove fixed this.”

V. THREATS TO VALIDITY

Internal validity. One threat to internal validity lies in the
implementation of the studied techniques in our evaluation.
To reduce this threat, we reused all the source code from
the original projects directly in our implementation with
best effort. When implementing the dictionary strategy, we
proposed an automatic approach to extract tokens in a LLVM
pass following prior work [23] to reduce potential bias caused
by user-provided tokens. Moreover, all the student authors
manually reviewed the code of all studied fuzzers including
CDFUZZ to ensure their correctness and consistency.
External validity. The threat to external validity lies in the
subjects and benchmarks. To reduce this threat, we have
selected 9 representative state-of-the-art fuzzers which cover
mainstream types of assisting exploration strategies, includ-
ing dictionary-based fuzzers, input-to-state-correspondence-
based fuzzers, gradient-based fuzzers, and SMT-solver-based
fuzzers. We also collect 21 frequently used projects from their
original papers as our benchmark suite.
Construct validity. The threat to construct validity mainly lies
in the metrics used. To reduce this threat, we adopted the most
popular metrics in fuzzing, i.e., edge coverage following [4],
[2], [3], [5], [49], to reflect the performance of different studied
techniques. Furthermore, we evaluated the effectiveness of our
approach in terms of the number of unique crashes.

VI. RELATED WORK

A. Fuzzing

Most existing fuzzers [5], [50], [46], [28], [25], [51], [52],
[53] use code coverage information to improve the efficiency

of fuzzing. In particular, AFL [2] provides the fundamental
framework for coverage-guided fuzzers. Accordingly, Fioraldi
et al. [3] integrated several techniques (e.g., taint tracking) to
enhance the ability of exploring program states for AFL. She et
al. [34] proposed NEUZZ, which leverages the power of neural
network models to explore unknown edges. Pham et al. [54]
proposed SGF which generates seeds on the virtual structure
of the file rather than on the bit level to improve fuzzing
efficacy. Meanwhile, AFLFast uses Markov Chain to schedule
seeds for exploring program states [46]. FAIRFUZZ focused
on rare branches for its exploration [5]. Zeror is a coverage-
sensitive tracing and scheduling fuzzing framework that uses
zero-overhead instrumentation and a schedule strategy be-
tween different instrumentation for AFL-based fuzzers [55].
Recently, researchers also pay attention to exploring program
states by focusing on the diversity of the program behaviors.
Nguyen et al. [56] introduced BeDivFuzz to schedule the
mutation strategy towards the validity and diversity of program
behaviors based on the received program feedback. Liang et
al. [28] proposed PATA to mutate the influencing input bytes
by leveraging the power of diverse explored program paths.
Yan et al. [57] introduced a new approach PathAFL to reduce
the tracing granularity of an execution path for exploring
program states. QATest adopts a new coverage guidance and
seed schedule strategy [58] for question-answering systems.
EMS utilizes historical explorations to identify mutators that
can trigger unique paths and crashes [59]. By adopting an
automatic dictionary generation strategy, FuzzingDriver gen-
erates dictionary tokens for coverage-based grey-box fuzzers
via parsing the original code [23]. Compared to FuzzingDriver,
CDFUZZ schedules existing tokens in dictionaries for different
seeds in runtime instead of generating tokens before fuzzing.

To explore program states guarded by complicated con-
straints, hybrid fuzzing techniques are proposed to combine
constraint solvers with grey-box fuzzers. Majumdar et al. [7]
presented hybrid fuzzing to interleave random fuzzing with
constraint solver for deep exploration of program state space.
Driller leverages fuzzing and selective concolic execution
with constraint solver in a complementary manner to explore
program states [60]. Chen et al. [16] leveraged the power
of gradient descent to solve the constraints in the target
program. QSYM optimistically solves constraints and prunes
uninteresting basic blocks during fuzzing [18]. Chen et al. [26]
introduced a machine-learning-based seed scheduling strategy
for hybrid fuzzing to explore program states efficiently. Huang
et al. [22] utilized polyhedral path abstraction to facilitate
constraint solving. CONFETTI fuzzes Java programs by com-
bining fuzzing with taint tracking and concolic execution
with constraint solver [61]. Meanwhile, chopped symbolic
execution [62] leverages various on-demand static analyses
at runtime to automatically exclude code fragments while
resolving their side effects to improve the efficiency of con-
straint solving. Compared to constraint solver and dynamic
taint tracking adopted by hybrid fuzzing, CDFUZZ generates
a customized dictionary for each seed via a lightweight static
analysis. Our experiments show that CDFUZZ outperforms the

state-of-the-art constraint-solving fuzzers.

B. Studies on Fuzzing

Many empirical studies [29], [31], [13], [63], [25], [64],
[65], [66] on fuzzing reveal various insights for improving
fuzzing techniques. Donaldson et al. [67] investigated a variety
of fuzzing techniques, including coverage-guided fuzzing with
and without custom mutators to test compilers and processing
tools for the graphics shading languages. Wu et al. [13]
conducted a study on Havoc fuzzing strategy and demon-
strated that it largely outperforms other strategies. Böhme
et al. [68] performed a study on discussing the reliability
metrics for evaluating the effectiveness of different coverage-
based fuzzers. They also study the scalability issues of fuzzing
in vulnerability discovery [69]. FuzzBench is a open-source
platform proposed for evaluating fuzzers to facilitate reliable
and reproducible evaluation results [29]. Herrera et al. [70]
systematically investigated and evaluated how seed selection
affects a fuzzer’s ability to expose vulnerabilities in real-world
systems. Klees et al. [31] provided multiple guidelines about
how to evaluate the effectiveness of different fuzzers. In this
paper, we conduct the first comprehensive study to investi-
gate how assisting exploration strategies perform in exploring
program states and reveal various findings to facilitate future
research.

VII. CONCLUSION

In this paper, we investigated the strengths and limitations
of assisting exploration strategies for exploring program states.
We first conduct an extensive evaluation to investigate how
assisting exploration strategies perform in exploring program
states. The evaluation results suggest that dictionary strategy
can be close to or even slightly more effective than other
techniques. Next, we investigate their limitations and find that
the dictionary strategy is most promising to be improved.
Inspired by our findings, we present a lightweight approach
namely CDFUZZ which customizes the dictionary for each
seed. Our evaluation results show that CDFUZZ outperforms
the best performer in our study by 16.1% in terms of edge
coverage. CDFUZZ also exposes 37 previously unknown bugs
where nine of them have been confirmed and seven of them
have been fixed by the corresponding developers.

DATA AVAILABILITY

The data and code are available at GitHub [20] for public
evaluation.

VIII. ACKNOWLEDGEMENT

This work is partially supported by the National Natural
Science Foundation of China (Grant No. 62372220) and
Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery Grant. It is also partially supported by
the Leading Innovative and Entrepreneur Team Introduction
Program of Zhejiang (Grant No. TD2019001) and Ant Group
Research Fund.

REFERENCES

[1] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[2] M. Zalewski, “American fuzz lop,” https://github.com/google/AFL,
2020.

[3] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20), 2020.

[4] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“Mopt: Optimized mutation scheduling for fuzzers,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1949–1966.

[5] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 475–485.

[6] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 627–637.

[7] R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th Interna-
tional Conference on Software Engineering (ICSE’07). IEEE, 2007,
pp. 416–426.

[8] Q. Xiao, Y. Chen, C. Wu, K. Li, J. Mao, S. Guo, and Y. Shi, “pbse:
Phase-based symbolic execution,” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 133–144.

[9] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“Savior: Towards bug-driven hybrid testing,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 1580–1596.

[10] “Custom mutators in afl++,” https://aflplus.plus/docs/custom mutators/,
2023.

[11] “Custom mutators in libfuzzer,” https://github.com/google/
libprotobuf-mutator, 2023.

[12] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[13] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE), 2022.

[14] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

[15] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[16] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 711–725.

[17] B. Mathis, R. Gopinath, and A. Zeller, “Learning input tokens for effec-
tive fuzzing,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 27–37.

[18] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A practical concolic
execution engine tailored for hybrid fuzzing,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 745–761.

[19] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[20] “Github repository. 2023. fuzzing-empirical-study,” https://github.com/
SophrosyneX/Fuzzing-empirical-study, 2023.

[21] C. Kaner, J. Falk, and H. Q. Nguyen, Testing computer software. John
Wiley & Sons, 1999.

[22] H. Huang, P. Yao, R. wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” 05 2020, pp. 1613–
1627.

[23] A. A. Ebrahim, M. Hazhirpasand, O. Nierstrasz, and M. Ghafari,
“Fuzzingdriver: the missing dictionary to increase code coverage in
fuzzers,” arXiv preprint arXiv:2201.04853, 2022.

[24] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[25] M. Wu, L. Jiang, J. Xiang, Y. Zhang, G. Yang, H. Ma, S. Nie, S. Wu,
H. Cui, and L. Zhang, “Evaluating and improving neural program-

smoothing-based fuzzing,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 847–858.

[26] Y. Chen, M. Ahmadi, B. Wang, L. Lu et al., “Meuzz: Smart seed
scheduling for hybrid fuzzing,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp.
77–92.

[27] “Aflplusplus redqueen mode,” https://github.com/AFLplusplus/
AFLplusplus/blob/stable/instrumentation/README.cmplog.md, 2023.

[28] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun,
“Pata: Fuzzing with path aware taint analysis,” in 2022 IEEE Symposium
on Security and Privacy (SP), 2022, pp. 1–17.

[29] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,”
in ESEC/FSE ’21: 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, D. Spinellis, G. Gousios,
M. Chechik, and M. D. Penta, Eds. ACM, 2021, pp. 1393–1403.
[Online]. Available: https://doi.org/10.1145/3468264.3473932

[30] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[31] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2123–2138.

[32] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting for
input prioritization.” in NDSS, 2020.

[33] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: fuzzing with
a multi-task neural network,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 737–749.

[34] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz: Effi-
cient fuzzing with neural program smoothing,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 803–817.

[35] B. Shastry, M. Leutner, T. Fiebig, K. Thimmaraju, F. Yamaguchi,
K. Rieck, S. Schmid, J.-P. Seifert, and A. Feldmann, “Static program
analysis as a fuzzing aid,” in Research in Attacks, Intrusions, and
Defenses: 20th International Symposium, RAID 2017, Atlanta, GA, USA,
September 18–20, 2017, Proceedings. Springer, 2017, pp. 26–47.

[36] “Codeql github page,” https://codeql.github.com, 2022.
[37] T. W. MacFarland and J. M. Yates, “Mann–whitney u test,” in Intro-

duction to nonparametric statistics for the biological sciences using R.
Springer, 2016, pp. 103–132.

[38] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[39] K. R. Irvine and L. B. Das, Assembly language for x86 processors.
Prentice Hall, 2011.

[40] G. Lee, W. Shim, and B. Lee, “Constraint-guided directed
greybox fuzzing,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
3559–3576. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/lee-gwangmu

[41] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,
“Profuzzer: On-the-fly input type probing for better zero-day vulnerabil-
ity discovery,” in 2019 IEEE symposium on security and privacy (SP).
IEEE, 2019, pp. 769–786.

[42] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“Greyone: Data flow sensitive fuzzing.” in USENIX Security Symposium,
2020, pp. 2577–2594.

[43] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: Automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2020, pp. 1–13.

[44] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in 2012 USENIX Annual
Technical Conference (USENIX ATC 12), 2012, pp. 309–318.

[45] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detector of
uninitialized memory use in c++,” in 2015 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 2015,
pp. 46–55.

[46] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,

https://github.com/google/AFL
https://aflplus.plus/docs/custom_mutators/
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://github.com/SophrosyneX/Fuzzing-empirical-study
https://github.com/SophrosyneX/Fuzzing-empirical-study
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.cmplog.md
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.cmplog.md
https://doi.org/10.1145/3468264.3473932
https://codeql.github.com
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu

ser. CCS ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1032–1043. [Online]. Available: https://doi.org/10.
1145/2976749.2978428

[47] “Github repository. 2023. jpeginfo heap-buffer-overflow,” https://github.
com/tjko/jpeginfo/issues/13, 2023.

[48] “Github repository. 2023. cmix memcpy-param-overlap,” https://github.
com/byronknoll/cmix/issues/54, 2023.

[49] V. J. Manès, S. Kim, and S. K. Cha, “Ankou: Guiding grey-box fuzzing
towards combinatorial difference,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020, pp.
1024–1036.

[50] “Libfuzzer – a library for coverage-guided fuzz testing,” https://llvm.
org/docs/LibFuzzer.html, 2023.

[51] M. Wu, Y. Ouyang, M. Lu, J. Chen, Y. Zhao, H. Cui, G. Yang, and
Y. Zhang, “Sjfuzz: Seed and mutator scheduling for jvm fuzzing,” in
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2023, pp. 1062–1074.

[52] M. Wu, M. Lu, H. Cui, J. Chen, Y. Zhang, and L. Zhang, “Jitfuzz:
Coverage-guided fuzzing for jvm just-in-time compilers,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 56–68.

[53] M. Wu, K. Chen, Q. Luo, J. Xiang, J. Qi, J. Chen, H. Cui, and
Y. Zhang, “Enhancing coverage-guided fuzzing via phantom program,”
in Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2023, pp. 1037–1049.

[54] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980–1997, 2019.

[55] C. Zhou, M. Wang, J. Liang, Z. Liu, and Y. Jiang, “Zeror: Speed up
fuzzing with coverage-sensitive tracing and scheduling,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2020, pp. 858–870.

[56] H. L. Nguyen and L. Grunske, “BEDIVFUZZ: integrating behavioral
diversity into generator-based fuzzing,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 249–261.
[Online]. Available: https://doi.org/10.1145/3510003.3510182

[57] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-coverage
assisted fuzzing,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
598–609. [Online]. Available: https://doi.org/10.1145/3320269.3384736

[58] Z. Liu, Y. Feng, Y. Yin, J. Sun, Z. Chen, and B. Xu, “Qatest: A uniform
fuzzing framework for question answering systems,” in 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022, pp.
1–12.

[59] C. Lyu, S. Ji, X. Zhang, H. Liang, B. Zhao, K. Lu, and R. Beyah, “Ems:
History-driven mutation for coverage-based fuzzing,” in 29th Annual
Network and Distributed System Security Symposium. https://dx. doi.
org/10.14722/ndss, 2022.

[60] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, no.
2016, 2016, pp. 1–16.

[61] J. Kukucka, L. Pina, P. Ammann, and J. Bell, “Confetti: Amplifying
concolic guidance for fuzzers,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022, pp. 438–450.

[62] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-
bolic execution,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 350–360.

[63] L. Jiang, H. Yuan, M. Wu, L. Zhang, and Y. Zhang, “Evaluating
and improving hybrid fuzzing,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2023, pp. 410–422.

[64] T. Gao, J. Chen, Y. Zhao, Y. Zhang, and L. Zhang, “Vectorizing program
ingredients for better jvm testing,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 526–537.

[65] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and L. Zhang,
“History-driven test program synthesis for jvm testing,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 1133–1144.

[66] M. Wu, Y. Ouyang, H. Zhou, L. Zhang, C. Liu, and Y. Zhang, “Simulee:
Detecting cuda synchronization bugs via memory-access modeling,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 937–948.

[67] A. F. Donaldson, B. Clayton, R. Harrison, H. Mohsin, D. Neto,
V. Teliman, and H. Watson, “Industrial deployment of compiler fuzzing
techniques for two gpu shading languages,” in IEEE International
Conference on Software Testing, Verification and Validation (ICST’23),
4 2023.

[68] M. Böhme, L. Szekeres, and J. Metzman, “On the reliability of coverage-
based fuzzer benchmarking,” in 44th IEEE/ACM International Confer-
ence on Software Engineering, ser. ICSE, vol. 22, 2022.

[69] M. Böhme and B. Falk, “Fuzzing: On the exponential cost of
vulnerability discovery,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2020. New
York, NY, USA: Association for Computing Machinery, 2020, p.
713–724. [Online]. Available: https://doi.org/10.1145/3368089.3409729

[70] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer, and A. L.
Hosking, “Seed selection for successful fuzzing,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 230–243. [Online]. Available:
https://doi.org/10.1145/3460319.3464795

https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://github.com/tjko/jpeginfo/issues/13
https://github.com/tjko/jpeginfo/issues/13
https://github.com/byronknoll/cmix/issues/54
https://github.com/byronknoll/cmix/issues/54
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3510003.3510182
https://doi.org/10.1145/3320269.3384736
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3460319.3464795

	Introduction
	Background
	Grey-box Fuzzing
	Assisting Exploration Strategies
	The dictionary strategy
	The input-to-state correspondence strategy
	The constraint-solving strategies (the SMT-solver-based strategy and the gradient-based strategy)

	Empirical Study
	Subjects & Benchmarks
	Subjects
	Benchmark suite

	Environment Setup and Implementation
	Research Questions
	Result Analysis
	RQ1: Effectiveness of the studied fuzzers
	RQ2: Specifics of the explored program states
	RQ3: The obstacles of different strategies

	Discussion

	Customized Dictionary Fuzzing
	Approach
	Evaluation
	Result and analysis
	Bug finding capability for bugs in the wild

	Threats to validity
	Related work
	Fuzzing
	Studies on Fuzzing

	conclusion
	Acknowledgement
	References

