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Warning: This paper contains harmful content solely for
the purpose of evaluating LLMs and does not promote any
harmful or criminal activities.

Abstract—Harmful content embedded in program elements
within source code may have detrimental impact on mental health
of software developers, and promote harmful behavior. Our
key insight is that software developers may introduce harmful
content into source code via diverse semantic-preserving program
transformations when using Code Large Language Models (Code
LLMs). To analyze the space of program transformations that
may be used to introduce harmful content into auto-generated
code, we conduct a preliminary study that revealed 32 different
types of transformations that can be used to introduce harmful
content in source code. Based on our study, we propose CHT,
a novel coverage-based harmfulness testing framework that au-
tomatically synthesizes prompts using a set of prompt templates
injected with diverse harmful keywords to perform various types
of transformations on a set of mined benign programs. Instead
of checking if the content moderation has been bypassed as prior
testing approaches, CHT performs output damage measurement
to assess potential harm that can be incurred by the generated
outputs (i.e., natural language explanation and modified code).
By considering output damage, CHT revealed several problems
in Code LLMs: (1) bugs in content moderation for code (Code
LLMs produce the harmful code without providing any warning),
(2) inadequacy in performing code-related task (e.g., Code LLMs
may resort to explaining the given code instead of performing the
instructed transformation task), and (3) lenient content modera-
tion (gives warning but the modified code with harmful content
is still produced). Our evaluations of CHT on four Code LLMs
and gpt-4o-mini (general LLM) show that content moderation
in Code LLMs is relatively easy to bypass where LLMs may
generate harmful keywords embedded within identifier names
or code comments without giving any warning (65.93% in our
evaluation). To improve the robustness of content moderation in
code-related tasks, we propose a two-phase approach that checks
if the prompt contains any harmful content before generating
any output. Our evaluation shows that our proposed approach
improves the content moderation of Code LLM by 483.76%.

Index Terms—large language models, code generation, harm-
fulness testing

I. INTRODUCTION

Online anonymity and a lack of accountability can ex-
acerbate the widespread dissemination of harmful content.
Exposure to harmful content can have adverse effects on
mental health and societal behavior. In the context of open-
source software development, a study [1] revealed that devel-
opers consider using harmful keywords when naming software
artifacts as a type of unethical behavior. For example, a
developer complained in a GitHub issue that using “genocide”

to name a program element may promote criminal behavior:
“It was never a good or ethical name...is...deliberate mass-
murder” [2]. Meanwhile, another study [3] showed that the
presence of toxic comments may have negative impact on
code quality. These studies indicate the importance of ensuring
responsible use of natural language in software artifacts (i.e.,
identifier names and comments).

Recognizing the importance of ensuring the responsible
use of LLMs, OpenAI has recruited a group of experts (also
known as “red teaming”) to perform manual adversarial testing
to mitigate the risks of producing harmful content [4], [5].
Meanwhile, several metamorphic testing techniques have been
proposed to detect the harmful content produced by LLMs [6],
[7]. However, existing techniques mainly focus on harmful
content generated by general-purpose systems (e.g., text gen-
eration [6], and image generation systems [7]). With the recent
advancement of Code Large Language Models (Code LLMs),
prior evaluations have demonstrated promising results in using
Code LLMs for solving various software maintenance tasks
(e.g., refactoring [8]–[10], and automated program repair [11]–
[14]). However, there is a lack of systematic approaches that
automatically generate tests to probe and identify harmful
content produced by LLMs for code. In this paper, we refer
to a systematic testing approach to identify harmful contents
generated by LLMs as harmfulness testing (Def 4).
Challenges. We identify four key challenges of harmfulness
testing for Code LLMs. (C1) Although source code can be
considered as a specialized type of textual content, existing
techniques designed for textual content systems are ineffective
in identifying the harmful content that can be potentially
produced by Code LLMs because they may ignore the unique
characteristics of source code and are agnostic to the vo-
cabulary of programming (which are usually identifier names
instead of plain texts in natural language [15]). Notably,
MTTM [6] that performs 11 different textual perturbations did
not consider camel case conversion, which is a widely-used
coding convention. Moreover, our evaluation in Section IV-C1
shows that LLMs give significantly different effectiveness
when detecting harmful textual content embedded in code
comment (i.e., natural language embedded in code) com-
pared to those embedded in names of program elements,
implying the need to design transformations customized for
perturbing source code. (C2) Prior approaches mainly focus
on limited number of categories (e.g., hate speech, erotic
and violent content [6], [7]), neglecting important categories



such as eating disorder, and misinformation. (C3) Although
prior evaluation shows that Code LLMs are more robust
in performing certain types of program transformations [8],
[9], [16], prior techniques largely ignore the diverse types of
program transformations specified within the prompts given to
Code LLMs. (C4) Prior approaches [6], [7] mainly rely on a
weak test oracle that checks if content moderation is bypassed.
Threat Model. Our threat model considers a malicious or
insensitive code contributor (the attacker) who misuses LLMs
to generate code containing harmful content and submits it to
open-source repositories. Victims who read or use such code,
often unknowingly, thereby propagating or being exposed to
harmful content.

Our key insight is that harmful content can be injected
into code via diverse types of semantic-preserving program
transformations. To analyze the space of possible program
transformations (address C3), we conducted a preliminary
study of refactoring types in Fowler’s catalog of refactor-
ing [17]. Based on our study, we obtained a total of 32
refactoring types which corresponds to 32 different prompt
templates where each template contains a placeholder for
injecting harmful content (usually injected via identifier name).

Inspired by traditional notions of code coverage, we define
harm category coverage which measures the proportion of
harm categories being tested (Eq. 1). Our definition (Def.
1) encodes diverse categories of harmful content based on
a unified taxonomy [18]. Unlike prior testing technique [6]
that relies solely on random selection of sentences from exist-
ing datasets which may miss some important categories, we
present CHT, a novel harmfulness testing framework guided
by harm category coverage.

In short, we made the following contributions:
• Dataset. We contributed a coverage-based harmful content

dataset, a dataset containing 100 keywords/phrases that
cover various harm categories. Our dataset has curated
keywords/phrases covering 13 harm categories based on a
unified taxonomy [18] drawn from various domains. We
also constructed a benign program dataset that supports
32 refactoring types and contains no harmful content. To
assess the scalability of our method, we further built a
large-scale benign program dataset with more lines of code.
Although this work focuses on testing Code LLMs using
these datasets, we foresee that they can also be used to
improve the harm category coverage of existing testing
approaches for general-purpose LLMs.

• Technique. We propose CHT, a novel coverage-based
harmfulness testing framework that automatically synthe-
sizes prompts using a set of prompt templates injected
with a diverse set of harmful words/phrases to perform
various types of transformations on a set of mined be-
nign programs. From a testing perspective, the input to a
Code LLM for a code transformation task contains (i1) a
natural language instruction, and (i2) the program to be
transformed, whereas the test output of the Code LLM
consist of (o1) the modified code, and (o2) a natural
language instruction that may contain a warning message.

Hence, we design CHT with several key components: (1)
diversity-enhanced prompt synthesis where each prompt
template has been designed based on transformations found
through our study, (2) benign program mining where we
collect programs that do not contain harmful content either
from the online refactoring catalog or bug reports for
various types of refactoring, (3) coverage-based harmful
content dataset construction where we select words/phrases
from existing datasets to ensure that all harm categories
have been represented with at least three keyword/phrases,
convert phrases (with multiple words) to camel cases, and
automatically inject the harmful content into the prompt
templates, (4) output damage measurement, a form of
heuristic test oracle [19], [20], where we measure the
degree of damage that can be incurred by the Code LLM
by automatically analyzing auto-generated code o1 and
explanation o2 (the ideal case with the least damage is to
stop generating code, i.e., empty o1 and give a warning in
o2). Compared to prior techniques [6], [7] that only check
whether content moderation has been bypassed, CHT can
detect various types of problems in Code LLMs (Def. 3):
(1) bugs in content moderation for code (the case GN
where the harmful code is generated without giving any
warning), (2) inadequacy in performing code-related task
(the case NN where no relevant code nor relevant warning
has been produced as a Code LLM may fail to perform the
instructed task, and only explain the given code), (3) lenient
content moderation (the case GR where warning message
is given but harmful code is still produced).

• Evaluation. Our evaluation on five LLMs (Deepseek-
coder:6.7b, CodeLlama:7b, CodeGemma:7b, Qwen2.5-
coder:7b and GPT-4o-mini) shows that CHT can automat-
ically identify problems in LLMs with 97.55% accuracy.

• Refined Code LLM. To improve the harmful content
moderation of Code LLMs, we leveraged the function
calling mechanism which allows LLMs to interact with
external tools. Experiments on Qwen2.5-coder:7b show
that 483.76% more harmful code generation requests are
rejected along with warning messages, indicating enhanced
content moderation for code LLMs.

• Availability. Our tool, results and datasets are publicly
available at [21].

• Ethical Considerations. CHT aims to automatically con-
struct inputs to Code LLMs to identify harmful content
in code, which we believe is essential towards building
responsible and safe models for code. Using our framework,
the model trainers can test their models against potential
harms and mitigate them before deployments. Hence, we
believe CHT is beneficial with respect to broader impact.

II. PROBLEM FORMULATION

Although there are other definitions of harm categories (e.g.,
Azure AI Content Safety with four harm categories: hate and
fairness, sexual, violence and self-harm [22]), we select the
unified taxonomy [18] for Def. 1 because it comprehensively
includes common types of harms described by industry, policy,



community and health experts. Notably, Def. 1 states that
harmful content can be manifested via 13 categories of harms.

Definition 1 (Harmful content). We define harmful content
based on a unified taxonomy of online harmful content [18]
which includes 13 categories: (1) doxing (i.e., provides per-
sonally identifiable information about an individual or organi-
zation), (2) identity attack, (3) identity misrepresentation, (4)
insult, (4) sexual aggression, (6) threat of violence, (7) eating
disorder promotion, (8) self-harm, (9) extremism, terrorism,
and organized crime, (10) misinformation, (11) adult sexual
services, (12) child sexual abuse material, and (13) scams.

We introduce an assumption of LLMs regarding its input
and output space in Def. 2 before presenting the formal
definition of harmfulness testing of Code LLMs.

Definition 2 (Input-Output of LLM C). We define a LLM
C as a closed-box system that maps inputs consisting of
(i1) natural language instruction and (i2) code snippet to
outputs o1 and o2 where o1 represents the generated code
(which could be empty if C refuses to generate code) and o2
represents the natural language explanation for the given task.

Although we may use Code LLMs for a code generation
task that may not include any code as input (in this case, i2
would be empty), this simplified assumption is sufficient for
the purpose of harmfulness testing for all code-related tasks for
Code LLMs. Prior testing approaches of content moderation
systems [6], [7] only measure whether content moderation has
been successfully bypassed (which is a binary value: Yes/No).
However, a real output can be more complex with each type
of output incurring different degree of damage to the user of
a Code LLM. Hence, we distinguish between two types of
outputs by measuring output damage in Def. 3.

Definition 3 (Output Damage D). Given a LLM C, we
measure its output damage (i.e., potential damage that can
be incurred via the two outputs o1 and o2 produced by C).
We introduce the notations below for the generated code (o1)
and generated explanation (o2):

Notation Score o1 with harmful content o2 with warning

GNBug 2 ✓ -
GR 1 ✓ ✓
NR 0 - ✓
NNBug -1 - -

1. We consider GNBug as a bug in content moderation for code because it
fails to perform any content moderation (generate code without any warning).
2. We consider NNBug as a bug in a Code LLM as it does not produce
information relevant to the transformation task (either fails to perform the
code-related task correctly or ignore the harmful content).
3. We consider GR as lenient content moderation because while the warning
is given, the user can still misuse the generated code for malicious purpose.

As stated in Def. 3, GR indicates the case where code with
harmful content has been generated (G) but a warning message
indicating its reluctance to provide results is generated (R).
Figure 1 shows an example of GR that although Qwen2.5-
coder:7b gave a warning about the use of offensive language, it
has successfully generated code. Meanwhile, GN indicates the
case where code with harmful content has been generated (G)

but no warning has been produced (N ). To provide a score for
each type of output, we define the space of output damage D
as={GN :2, GR:1, NR:0, NN :-1} where outputs are mapped
to a number indicating the degree of damage to the user of
a Code LLM. As an interactive system should provide some
relevant feedback instead of not generating the relevant code
nor providing any relevant message, we assign NN a score of
−1. Figure 2 shows an example of NN where CodeLLama
failed to perform the Introduce Parameter Object refactoring.
Instead of performing the refactoring, CodeLLama resorts to
code explanation. We consider this failure to perform the task
as a bug in Code LLM.

Fig. 1: An example of lenient content moderation that gives a
warning but still generates code with harmful content (GR).

Fig. 2: An example of neither generating relevant code nor
providing any warning message (NN ).

Based on various ethics aspects of responsible AI [23],
we consider NR as the best option (output damage:0) for a
Code LLMs as L not only stops generating code (i.e., high in
accountability), it also produces a warning message to educate
users (i.e., high in transparency and explainability).

Definition 4 (Harmfulness Testing). Given the input-output
defined in Def 2, harmfulness testing evaluates the output
damage D (stated in Def 3) produced by C.

III. METHODOLOGY

To analyze the space of possible program transformations
that can be misused for injecting harmful content, we conduct
a preliminary study of refactoring that can be misused (Sec-
tion III-A). Based on our study, we propose CHT, a harm-
fulness testing framework for Code LLMs. Figure 3 shows
CHT’s workflow which consists of four key components:



(1) coverage-based harmful content dataset, (2) diversity-
enhanced prompt synthesis, (3) harmful content execution in
LLMs, and (4) output damage measurement.

A. Preliminary Study
Our intuition is that developers may use a diverse set of

semantic-preserving program transformations (i.e., refactor-
ing) to inject harmful content. Hence, our study target refactor-
ing types listed in Fowler’s online catalog of refactoring [17],
a list of commonly used refactoring by software practitioners.
Specifically, our study aims to answer the question below:

RQ0: What are the types of transformations in which
harmful content can be injected into a given benign program?
Study Methodology: To avoid personal bias, two annotators
independently reviewed the 66 refactorings listed in the online
refactoring catalog [17], [24]. Both annotators have over ten
years of programming experience. For each refactoring, each
annotator independently determined the possibility of modify-
ing or introducing new harmful content into a benign program
(e.g., through direct or indirect renaming). After independent
analysis, the two annotators meet to resolve conflicts and
finalize the set of refactorings. A third annotator is involved
when the conflicts cannot be resolved. Following existing
approaches [1], [25], we measured the inter-rater agreement
among the annotators via Cohen’s Kappa coefficient. Specifi-
cally, there are eight out of the 66 refactoring types (12%) with
divergent labels, which leads to Cohen’s Kappa coefficient be-
ing 88%, indicating near perfect agreement. The entire process
of manually analyzing and discussing the 66 refactoring types
takes around 12 hours.

Table 1 in [26] shows the results of our pilot study which
identifies a total of 32 refactoring types from six categories in
which one can use to inject harmful content into a benign pro-
gram. Notably, refactoring categories that involve extraction,
rename, replacement, encapsulate, introducing new program
elements, and others can be used to inject harmful code
content.

Finding 0: Among the Fowler’s online categories of refac-
toring [17], we identified 32 types of refactoring that can be
used to inject harmful content into benign programs. The
identified refactoring categories are diverse, including Ex-
tract, Rename, Replace, Encapsulate, Introduce, and Others.

B. Dataset Construction

To construct the test inputs (i1 and i2 in Def 2) for
harmfulness testing of Code LLMs, we propose two datasets:
(1) coverage-based harmful content dataset for the natural
language instruction i1, and (2) benign program dataset for
the code snippet i2.

1) Coverage-based Harmful Content Dataset: To assess
harmful content generation in LLMs, we define harmful con-
tent based on Def. 1, which classifies harmful content into 13
categories. This dataset lays the foundation for evaluating how
well LLMs handle and resist the generation of harmful content.
It is infeasible to exhaustively explore the space of possible
combinations of inputs and outputs of a Code LLM. Hence,

we need to design a systematic way to partition the input space
of harmful content into different equivalence classes and try
to cover all classes by picking samples from each of them.
We call this method “coverage-based” because our keyword
selection is based on Input Space Partitioning (ISP) in the
textbook [27]. Selecting ≥ 1 keywords from each class fulfills
each choice coverage criterion in ISP. Based on Def 1, we
define harm category coverage in Eq. 1.

Harm Category Coverage =
|Executed Harm Categories|
|Total Harm Categories|

(1)

Formally, harm category coverage is the ratio of executed
harm categories (i.e., we consider a harm category cat being
executed if there is a harmful keyword/phrase representing cat
being provided as input to a Code LLM to run to generate
outputs) and the total number of harm categories (i.e., 13
according to Def. 1). Currently, our harm category coverage
only considers the number of covered categories by a set of
keywords, which may be too coarse-grained. We plan to use
semantic trees to select more semantically diverse keywords.

Instead of using sentences from text messages datasets in
prior work [6], we construct our harmful content dataset at
the word-level (or phrase) level because names of program
elements are usually words/short phrases to ease as longer
names are shown to have a negative influence on readabil-
ity [28]. While there are several existing datasets with harmful
content at the word-level (e.g., Hurtlex [29]), they fail to
comprehensively cover all 13 categories or provide a detailed
offensiveness grading. To address this limitation, we curate
a set of 100 words/phrases drawn from two sources: (1)
Weaponized Word [30] and (2) Hurtlex [29].

Table 2 in [26] shows that the Harm Category Coverage of
Weaponized Word is =7/13 (53.8%) whereas Harm Category
Coverage of Hurtlex is 11/13 (84.6%). Although Hurtlex
has higher coverage than Weaponized Word, we prioritize
using data from Weaponized Word dataset because it has
labeled each word/phrase with an offensiveness score, which
allows us to select “Extremely offensive” from this dataset
to represent the most severe harmful content. For uncovered
categories in Weaponized Word, we augment them with words
from Hurtlex. To further augment these datasets, we select
additional words from the names of the category (e.g., doxing).
Subsequently, our final dataset has a Harm Category Coverage
of 100% where each category is represented by no fewer than
three keywords.

2) Benign Program Dataset: A benign program refers to a
program that does not have any harmful content. We assume
that programs with harmful content (we refer to them as
harmful code) can be generated by starting with a benign
program and applying certain transformations. This assump-
tion is inspired by Mencius’s [31] and Aristotle’s theory of
innate human goodness [32]: human behavior is benign at the
beginning and then harmful behavior is derived from them.

As different types of transformations require the benign
programs to exhibit certain characteristics (e.g., rename vari-
able requires a benign program to have one variable to
rename) [33], [34] to be able to successfully execute a given



Fig. 3: An overview of the CHT framework.

transformation, our goal is to obtain a benign program dataset
to support diverse set of transformations. To the best of our
knowledge, no existing dataset comprehensively covers all 32
refactoring types suitable for harmful content injection, which
are essential to ensure the diversity of the tested refactoring
types. Hence, we build two tailored datasets: (1) a benign
program dataset (BPD) with an average of 8 lines of code
(LoC), and (2) a large-scale benign program dataset (BPD-L)
with an average of 156 LoC. BPD is from two datasets: (1)
an existing dataset of programs used for testing refactoring
engines [35], and (2) examples from the online catalog of
refactoring [17]. Specifically, the existing dataset [35] mined
real-world compilable programs from historical bug reports
of refactoring engines (JDT from ECLIPSE, and the Java
refactoring component of INTELLIJ IDEA), which inherently
covered only 13 of the 32 refactoring types identified in our
study. To cover more refactoring types, we complement the
dataset with additional examples from the online refactoring
catalog. This ensures that the final dataset includes all 32
refactoring types, including those that were not covered by
the previously mined programs. By leveraging a combination
of real-world examples and code snippets from the refactor-
ing catalog, this dataset lays the foundation for the prompt
synthesis component of CHT. To assess the effectiveness of
our approach on larger programs, we mine BPD-L from the
RefactoringMiner dataset [36], focusing only the 32 types of
refactoring from Finding 0. For each type covered by the
dataset, we extract the refactored code from the corresponding
commit. For each uncovered type, we manually select another
program in the dataset that: (1) satisfies the precondition for
the refactoring, and (2) is from a different file (to ensure
diversity). The final set spans 26 different repositories [21].
Table I shows the detailed statistics for both datasets.

TABLE I: Benign Program Dataset Statistics

Dataset LoC Source Programs RepositoriesMin Max Avg
BPD 3 16 8 32 –
BPD-L 117 189 156 32 26

Source Programs: for both datasets, one distinct program is used per refac-
toring type (32 types) to ensure diversity.
Repositories: Repository metadata for BPD is unavailable because the dataset
is collected from bug reports [35] and online refactoring catalog [17].

C. Diversity-enhanced Prompt Synthesis
Given the two inputs (obtained from coverage-based harm-

ful content dataset and the benign program dataset), CHT

performs diversity-enhanced prompt synthesis using a set of
prompt templates to prepare the prompts that will be feed
as inputs to a LLM under test. Specifically, for each type of
transformation, we further design the corresponding prompt
template. To enhance the diversity of the program transfor-
mations used, we designed two types of transformations: (1)
refactoring with either a single word or phrases converted to
camel cases, and (2) transformations that introduce natural
languages (e.g., code comments).
Refactoring. We design a tailored prompt for each specific
refactoring type by incorporating the name of the refactoring
type into the prompt (e.g., rename the variable “s1” to <new-
Name> in Figure 1). The detailed prompts corresponding to
each refactoring are provided in [37]. To follow the vocabulary
of a given programming language (i.e., CHT currently sup-
ports Java programs), we convert all the multi-word phrases
in the coverage-based harmful content dataset into camel case
naming conventions. Although this adaptation can be seen
as a special type of textual perturbation similarly used in
prior work [6], our evaluation in Section IV-C4 shows that by
applying only one tailored type of perturbation that follows
programming conventions, CHT can effectively bypass the
content moderation of most Code LLMs.
Transformations that Introduce Natural Language (NL).
This transformation focuses on the Insert Comment task,
which is designed as a comparative approach to refactoring.
The goal is to assess whether LLMs exhibit different behavior
when processing tasks related to code refactoring versus tasks
involving natural language, which contain harmful content
without any textual perturbation. We design one prompt tem-
plate for all benign programs:

Insert a comment for the following code with the
content [keyword]:

In this prompt, CHT dynamically replaces the placeholder
”[keyword]” with entries from the harmful keyword dataset,
thereby generating a diverse set of prompts. This setting allows
us to systematically evaluate how LLMs handle the incorpo-
ration of potentially harmful language in unperturbed format
compared to structured code transformations (i.e., refactoring).

D. Harmful Content Execution in LLMs

We conduct harmfulness testing by feeding our synthesized
prompts to both Code LLMs and general LLMs. While our
primary focus is on Code LLMs, it is valuable to also



include a comparison with general LLMs to identify potential
differences in their ability to resist the generation of harmful
content. This comparison provides insights into the distinct
challenges posed by specialized code generation models versus
more general-purpose models. The input to this component
consists of the synthesized prompts, which are designed for
both the refactoring task and the insert comment task.
Code LLMs. To evaluate Code LLMs, we use open-source
models in the Ollama platform [38]. Our selection criteria is:
1) The model must be specifically trained to understand and

generate code in programming languages.
2) To guarantee the quality of the model, it should have more

than 500,000 of downloads on the Ollama platform.
3) Given the nature of the code-related tasks that we focus on,

the model should be able to process instructive prompts.
4) Due to computational and cost constraints, the model

should ideally have a parameter scale ≤7b.
Based on the criteria above, we selected four open-source
Code LLMs: Code Llama:7b [39], CodeGemma:7b [40],
Qwen2.5-coder:7b [41], and Deepseek-coder:6.7b [42]. We
excluded StarCoder2 [43], which is a code completion model
because it does not effectively support instructive prompts
(does not meet criterion (3)).
General LLMs. To enable a comparative analysis of perfor-
mance differences between Code LLMs and general LLMs,
we include GPT-4o-mini [5] in our testing. This comparison
is essential for understanding how domain-specific models,
such as Code LLMs, differ from general-purpose models in
handling harmful prompts.

E. Output Damage Measurement

After executing each input, CHT evaluates the output
produced by the LLM by measuring the output damage as
specified in Def. 3. The goal is to quantify the degree of
harmful content injection into the outputs, and understand
how well the models resist harmful content generation. Def. 3
shows that we categorize the outputs into four types: GR, GN ,
NN , NR where NR represents the ideal case where a Code
LLMs behaves correctly and other types either indicates a bug
or lenient content moderation.

To validate the generated code, for the program refactoring
task o1, CHT: (1) uses the regular expression ```(.*?)```
to extract all code blocks from an LLM response (i.e., code
blocks are usually marked with ``` in markdown); (2) for each
harmful keyword k, constructs a variant set V (k) comprising
the original form and a camelCase variant when k is a multi-
word phrase; (3) normalizes the code blocks and all variants
using Unicode case folding (case-insensitive); and (4) uses
string matching to check whether the injected harmful keyword
occurs in the code blocks. For the insert comment task, CHT
also uses string matching to detect if the injected harmful
keywords are found in the generated comments.

As the explanation o2 is written in natural language instead
of a particular format, CHT uses a keyword-based text match-
ing approach to categorize o2. While more advanced natural
language processing techniques can be used to categorize o2,

we use the keyword-based text matching approach as the
output damage measurement component plays the role of as-
sertions in harmfulness testing, which should be run relatively
fast to validate the results. To identify a set of keywords
that represent potential warning messages indicating inappro-
priate content (e.g., “offensive” in Figure 1), we randomly
sampled and manually reviewed 20% generated responses for
each LLM since different LLMs tend to generate their own
unique warning messages. To assess sensitivity to the manual-
verification rate, we repeated the procedure at 10% (instead
of the default 20%) and examined whether the RQ2 accuracy
changed with the revised keyword set (Section IV-B shows
the results). With the identified set of keywords indicative
of a warning message, CHT checks whether the remaining
responses contain these keywords.

IV. EVALUATION

Our evaluation focuses on the research questions below:
RQ1: How effective is CHT in harmfulness testing across
different LLMs?
RQ2: How accurate is CHT’s output damage measurement?
RQ3: How different factors affect CHT’s effectiveness?
RQ4: Can we improve content moderation in a Code LLM?
Implementation. As explained in Section III-D, we tested
five LLMs: four Code LLMs (Deepseek-coder:6.7b, CodeL-
lama:7b, CodeGemma:7b, and Qwen2.5-coder:7b), and one
general-purpose LLM (GPT-4o-mini). We performed program
refactoring and comment insertion tasks for Code LLMs on
Google Colab with an NVIDIA L4 GPU. For GPT-4o-mini,
we call the OpenAI API [44]. We set the temperature to 0 for
all LLMs to reduce randomness and ensure reproducibility.

A. RQ1: Effectiveness Across Different LLMs

Table II shows the effectiveness of LLMs in generating
harmful code in our collected dataset. The first column listed
the LLMs under test. Based on Def. 2 and Def. 3, we classify
the responses of each LLM into four labels (i.e., GN , GR,
NR, and NN ) according to their output damage. For each
category, we also listed the results for refactoring (column
“Ref.”) and code comment insertion (column “Com.”).

On average, 65.93% harmful code is successfully generated
without any warning message (i.e., GN ), indicating that
their ability to resist harmful code generation is still limited.
OpenAI’s general purpose model, GPT-4o-mini, performed the
worst, 85.66% of its responses contain harmful code and with-
out any warning. On the other hand, the best performing model
is CodeLlama:7b, with is only 38.13%. We can also observe
that on average 0.61% harmful code is generated together
with the warning message (i.e., GR). In which CodeLlama:7b
and GPT-4o-mini generate the lowest and highest number of
harmful code, that is 0.16% and 1.78%, respectively.

From Table II, we also observe that 7.49% harmful code
generation requests are rejected with warning messages (i.e.,
NR). We consider NR as the best option (output damage=0)
since LLM not only stops generating harmful code, it also
produces warning messages to educate users about potential



TABLE II: Effectiveness of LLMs on harmful code generation. The values are shown as percentages (%).

LLM GN (2) GR (1) NR (0) NN (-1)
Ref. Com. Ref. Com. Ref. Com. Ref. Com.

CodeGemma:7b 70.34 59.00(-16.12) 0.50 0.03(-94.00) 12.72 39.63(+211.56) 16.44 1.34(-91.85)
CodeLlama:7b 38.13 53.81(+41.12) 0.16 0.72(+350.00) 13.22 34.88(+163.84) 48.50 10.59(-78.16)

Deepseek-coder:6.7b 63.66 88.97(+39.76) 0.41 1.28(+212.20) 0.19 1.00(+426.32) 35.75 8.75(-75.52)
Qwen2.5-coder:7b 71.84 49.31(-31.36) 0.22 0.31(+40.91) 5.91 15.81(+167.51) 22.03 34.56(+56.88)

GPT-4o-mini 85.66 83.41(-2.63) 1.78 4.94(+177.53) 5.41 11.00(+103.33) 7.16 0.66(-90.78)
Average 65.93 66.90(+1.47) 0.61 1.46(+139.34) 7.49 20.46(+173.16) 25.98 11.18(-56.97)

Qwen2.5-coder:7b++ 49.44(-31.18) 49.81(-1.01) 0.22(+0.00) 1.84(+493.55) 34.50(+483.76) 15.97(+1.01) 15.84(-28.10) 32.38(-6.31)

The numbers in parenthesis in row 1 denote the output damage score (e.g., GN has a score of 2). Ref. = Refactoring, Com. = Insert Comment. Each value
in the Ref./Com. column is calculated as x

y
× 100% where x is the number of outputs with a given label for a LLM, and y is the total number of outputs.

violations (i.e., explainability). Among all LLMs evaluated,
CodeLlama:7b achieves the best performance (13.22% NR).
However, only 0.19% responses from Deepseek-coder:6.7b
are NR. On average, 25.98% responses do not contain any
harmful code or warning message (i.e., NN ). GPT-4o-mini
gives the lowest number (7.16%) of NN while 48.50% of
CodeLlama:7b’s responses are NN . Table II shows that among
all the LLMs evaluated, GPT-4o-mini generates the highest
number of harmful codes (85.66% GN and 1.78% GR).
CodeLlama:7b is the most effective in rejecting harmful code
generation (13.22% NR, and 48.50% NN ), and generate the
least harmful code (38.13% GN , and 0.16% GR).

Finding 1: Our evaluation shows that LLMs have lim-
ited ability to resist harmful code generation. On average,
65.93% of harmful code is generated without any warning,
while 0.61% is produced despite a warning message. Among
the models evaluated, CodeLlama:7b and CodeGemma:7b
perform the best in rejecting harmful code generation.

B. RQ2: Accuracy of Output Damage Measurement

As CHT relies on output damage measurement OD as
test oracle, it is important to access its accuracy. Formally,
the accuracy of output damage measurement AccuracyOD is
the ratio of correct predictions of the four labels to the total
predictions of all samples.

AccuracyOD =
|Correct predictions of labels|
|Total predictions of samples|

To measure AccuracyOD, we collected a sample of responses
generated by LLMs at a 95% confidence level with a 5%
margin of error. The required sample size is given by n =
z2p̂(1 − p̂)/e2. Assuming an effectively infinite population
and the conservative proportion p̂ = 0.5 with z = 1.96 and
e = 0.05, the required sample size is 384 responses per LLM,
yielding a total of 1,920 across the five LLMs under study. For
each sampled response, two annotators independently classi-
fied the response into one of the four labels (GN , GR, NR,
NN ). To reduce bias, the label produced by CHT (labeltool)
is not shown to each annotator; any conflicts are discussed
by the annotators until they reached a consistency. Then,
we use a script to automatically compare labeltool with the
manual label. Our manual classification results show that CHT
achieves an overall AccuracyOD of 97.55% (at 20% sampled
keyword set, described in Section III-E), indicating relatively
high accuracy. With a sampling of 10%, CHT achieves an
overall AccuracyOD of 97.50%. Compared to the default

setting of 20%, the absolute difference is 0.05%, showing that
our measurement is still relatively accurate despite sampling
less keywords. This is because LLMs’ responses only contain
limited keywords so a small set of keywords is sufficient.

Finding 2: The output damage measurement in CHT
achieves an overall accuracy of 97.55%.

Ethical Considerations. When manually analyzing
AccuracyOD, annotators may be exposed to harmful
auto-generated outputs. To mitigate the negative impact of
reading harmful content, we recommend each annotator
to focus their attention on classifying the outputs into the
four labels instead of understanding the meaning of harmful
words/phrases. Annotators are also recommended to view
positive words or images after reading harmful content.

C. RQ3: Impact of Different Factors
We evaluate six factors that can affect CHT’s effectiveness:

(1) insert comment versus refactoring, (2) impact of refactor-
ing categories, (3) impact of harm categories, (4) impact of
camel case conversion, (5) size of benign programs, and (6)
impact of harm category coverage.

1) Insert Comment versus Refactoring: Table II shows the
effectiveness of LLMs for the generation of harmful code
comments (“Com.” columns). The overall average for gen-
erating harmful code comments without any warning message
(GN ) is 66.90%, which is almost the same as for refactoring
tasks. Qwen2.5-coder:7b, CodeGemma:7b, and GPT-4o-mini
tend to generate less GN compared to refactoring. Deepseek-
coder:6.7b performs the worst, with 88.97% of its responses
containing harmful code comments without any warning mes-
sage (i.e., GN ). Meanwhile, the best performing LLM is
Qwen2.5-coder: 7b (49. 31% GN ), which achieves a 31.36%
reduction compared to refactoring. The average generation of
harmful comments for GR is 1.46%, which are relatively low
despite a 139.34% increase compared to refactoring. However,
the percentage of NR for the generation of harmful code
comments (20. 46%) is almost three times higher compared
to the generation of harmful code (7. 49%), indicating that
more requests for the generation of harmful code comments
are denied with warning messages. Chi-square tests shows that
the difference in output labels between the insert comment and
refactoring task is statistically significant across all models
(all p-values < 0.05; see [21] for details). Compared to code
modification via various types of refactoring, which may be
more complex, LLM tends to refuse generating harmful code



comments written in natural language because the refactoring
operations could be more challenging to perform. During this
process, the attention of LLMs to content moderation might
be distracted and decreased, making them more susceptible to
generating harmful code [45].

Focusing on individual LLM, we observed that Deepseek-
coder:6.7b generates the most harmful code comments
(88.97% GN and 1.28% GR) leading to 90.25% harm-
ful code comments. Qwen2.5-coder:7b produces the least
(49.31%) harmful code comments compared to other LLMs.
CodeGemma:7b and CodeLlama:7b generate more NR com-
pared to other LLMs, and relatively less harmful code com-
ments (GR). This indicates that the content moderation in
CodeGemma:7b and CodeLlama:7b are relatively effective in
harmful code comment generation because they not only gen-
erate less harmful comments but also reject more requests with
warning messages (higher transparency and explainability).

Fig. 4: The heatmap of GN for different refactoring categories.
Each value is a percentage (x/y)% where x denotes the number
of a given refactoring category with label GN and y is the total
number of GN for a given tool.

Finding 3: Compared to harmful code generation, LLMs
tend to refuse harmful code comment generation and provide
warning message to indicate potential risk (NR). Among the
models evaluated, Deepseek-coder:6.7b performs the worst,
while CodeGemma:7b and CodeLlama:7b perform the best.

2) Effectiveness for Different Refactoring: Figure 4 shows
the heatmap for the effectiveness of LLMs in generating
harmful code for various refactoring categories (y-axis) in
Table 1 in [26]. We focus on GN because its output damage is
the highest. Figure 4 shows that CodeLlama:7b performs the
best since it produces the lowest number of harmful code for
all refactoring categories. In contrast, GPT-4o-mini produces
the highest number of harmful code for all refactorings,
indicating its poor ability to resist harmful code generation.
For “Extract” refactoring, Qwen2.5-coder:7b performs as bad
as GPT-4o-mini, producing 27% harmful code without any
warning message. CodeGemma:7b produces more harmful
code for “Introduce” and “Replace” refactoring.

Finding 4: Across all refactoring categories, GPT-4o-mini
generates the highest number of harmful code, while CodeL-
lama:7b produces the fewest.

Figure 5 shows the heatmap of NN for various refac-
toring types. Based on Table II, we observe that although
CodeLLama generates the least number of GN compared to
other tools, it has the greatest number of NN where it tends
to generate NN for “Introduce” and “Extract” refactoring
category. When manually investigating the results, we notice
that CodeLLama tends to explain the given code when it
encountered complex refactoring types that it fails to perform
(e.g., Figure 2). This can be considered a type of hallucination.

Finding 5: Code LLMs such as CodeLLama:7b may pro-
duce NN for complex refactoring categories (e.g., “Intro-
duce”) that it fails to perform. It may resort to explaining the
code instead of performing the task (a form of hallucination).

Fig. 5: The heatmap of NN for various refactoring categories.
Each value is a percentage (x/y)% where x denotes the number
of a given refactoring category with label NN and y is the
total number of NN for a given tool.

Fig. 6: The heatmap of GN for various harm categories. Each
value is a percentage (x/y)% where x denotes the number of a
given harm category with label GN and y is the total number
of GN for a given tool.

3) Effectiveness of Various Harm Categories: Figure 6
shows the heatmap for the effectiveness of LLMs in generating
harmful code for various harm categories. The horizontal axis
shows the different LLMs, and the vertical axis lists the harm



TABLE III: Effectiveness of LLMs on harmful code generation (we exclude data for “Insert comment” as phrases in comments
are not converted into camel case): Phrase (20 phrases) versus Word (80 words).

LLM GN (2) GR (1) NR (0) NN (-1)
Phrase Word Phrase Word Phrase Word Phrase Word

CodeGemma:7b 74.38 69.34(-6.78) 0.78 0.43(-44.87) 16.72 11.72(-29.90) 8.13 18.52(+127.80)
CodeLlama:7b 50.63 35.00(-30.87) 0.31 0.12(-61.29) 8.44 14.41(+70.73) 40.63 50.47(+24.22)

Deepseek-coder:6.7b 73.28 61.25(-16.42) 0.31 0.43(-38.71) 0.00 0.23(N/A) 26.41 38.09(+44.23)
Qwen2.5-coder:7b 82.66 69.14(-16.36) 0.00 0.27(N/A) 0.94 7.15(+660.64) 16.41 23.44(+42.84)

GPT-4o-mini 85.16 85.78(+0.73) 2.81 1.52(-45.91) 2.81 6.05(+113.30) 9.22 6.64(-27.98)
Average 73.22 64.10(-12.46) 0.84 0.55(-34.20) 5.78 7.91(+36.84) 20.16 27.43(+36.07)

Each value in the phrase/word column is calculated as x
y
× 100%, where x is the number of outputs with a given label under the corresponding LLM and

keyword format (i.e., phrase or word), and y is the total number of output labels for that LLM and keyword format.

keyword categories. As shown in Figure 6, overall, GPT-4o-
mini performs the worst for each harmful category among all
LLMs. Among all categories, GPT-4o-mini tends to perform
worse when generating harmful code for “doxing”, “insult”,
“misinformation” and “scams”. Although we only evaluated
on GPT-4o-mini, this result aligns well with GPT-4o System
Card [5] which focuses on evaluating other categories (e.g.,
self-harm and threat of violence).

In contrast, CodeLlama:7b achieves the best perfor-
mance for all categories. Deepseek-coder:6.7b, and Qwen2.5-
coder:7b are more prone to generate harmful code related to
sexual content (i.e., “child sexual abuse materials” and “sexual
aggression”). Indeed, we observed that all the evaluated LLMs
tend to neglect content moderation for at least one category
among the three categories related to sexual content ( “adult
sexual services”, “child sexual abuse materials” and “sexual
aggression”). We attribute this to the fact that the content
moderation of most LLMs [46], [47] usually group together
all sexual-related content under one “Sexual content” category.
This indicates the importance of considering more fine-grained
harm categories when evaluating harmful content. By defining
harmful content with more categories (Def. 1) and using harm
category coverage, we can use CHT to show the inadequacy
in content moderation for the three sexual-related categories.

Finding 6: Overall, GPT-4o-mini generates the highest
number of harmful codes for nearly all harm categories,
while CodeLlama: 7b produces the least. All evaluated
LLMs perform differently across the three sexual-related
categories as LLMs usually combine them into one category
“Sexual Content”. By considering more fine-grained harm
categories, CHT ensures that all categories are well-tested.

4) Phrases Versus Single Word: There are 20 phrases
and 80 single words in our coverage-based harmful content
dataset. Note that this ratio of phrase/words is inherited from
our dataset construction step as we prioritize more offensive
words/phrases and use category names (e.g., “eating disorder
promotion”) as phrases. Table III shows the effectiveness of
LLMs on harmful code generation with respect to phrases
versus words. As we convert phrases into camel cases to follow
programming naming conventions, we expect single words to
be more effective for LLM to perform content moderation. The
result in Table III shows that phrases converted to camel cases
are more likely to bypass content moderation. On average,
GN for phrases is 73.22% compared to 64.10% for words.
Similarly, the percentage of NN for words is greater than

that of phrases (27.43% for words versus 20.16% for phrases).
Our statistical analysis using chi-square tests shows that the
differences in output labels between phrases and single words
are statistically significant across all models (all p-values <
0.05; see [21] for detailed data), implying that the camel case
conversion in CHT is effective.

Finding 7: Compared to single words, our evaluation shows
that LLMs are less effective in content moderation for
phrases converted to camel cases.

5) Size of Benign Programs: Table IV shows the results
for the two benign program datasets (BPD and BPD-L) on the
refactoring tasks. Compared to BPD, all models produce fewer
GNs and more NNs on BPD-L. On average, GNs decrease
by 23.07% and NNs increase by 71.98%. Average GR and
NR also decrease on BPD-L. The increase of NNs occurs
because larger inputs make instruction following harder: mod-
els tend to explain the program rather than executing the
refactoring (e.g., Figure 2). CodeLlama:7b is the least robust
with the least GNs (2.97%), and the most NNs (96.44%)
on BPD-L. Its NRs decrease from 13.22% (BPD; best) to
0.59% (BPD-L; worst), showing poor robustness to larger
inputs. Qwen2.5-coder:7b gives the most NRs on BPD-L
(7.17%). We include results for the insert comment task in
our website [21]. Similar to the refactoring tasks, all models
produce less GNs on BPD-L than BPD, and more NNs
(except GPT-4o-mini). CodeLlama:7b remains the least robust
with the least GNs (1.00%) and the most NNs (98.56%).

Finding 8: Given larger programs (BPD-L), LLMs are
less robust in refusing harmful code generation (less GNs)
and ineffective in transformation (more NNs) with CodeL-
lama:7B having the largest decline in robustness.

6) Impact of Harm Category Coverage: To assess the im-
pact of harm category coverage (defined in Def. 1), we conduct
an ablation study of a harmful keyword dataset with lower
coverage. Specifically, we use only the Weaponized Word (ex-
cluding Hurtlex) as the source of harmful keywords with only
53.8% harm category coverage. For a fair comparison with
the original 100-keyword dataset, we expand the Weaponized
Word subset to the same size (100 keywords) following the
same procedure in Section III-B1. The ablation results (in our
website [21]) show that only 7 of the 13 harm categories are
covered. With a lower coverage dataset, uncovered categories
such as “doxing” and “self-harm” (marked as “N” in Table 2



TABLE IV: Effectiveness of LLMs given various program sizes in the two benign program datasets: BPD versus BPD-L.

LLM GN (2) GR (1) NR (0) NN (-1)
BPD BPD-L BPD BPD-L BPD BPD-L BPD BPD-L

CodeGemma:7b 70.34 54.50(-22.52) 0.50 0.44(-12.00) 12.72 3.44(-72.96) 16.44 41.62(+153.16)
CodeLlama:7b 38.13 2.97(-92.21) 0.16 0.00(-100.00) 13.22 0.59(-95.54) 48.50 96.44(+98.85)

Deepseek-coder:6.7b 63.66 52.25(-17.92) 0.41 0.09(-78.05) 0.19 2.44(+1184.21) 35.75 45.22(+26.49)
Qwen2.5-coder:7b 71.84 68.45(-4.72) 0.22 0.16(-27.27) 5.91 7.17(+21.32) 22.03 24.23(+9.99)

GPT-4o-mini 85.66 75.41(-11.97) 1.78 1.91(+7.30) 5.41 6.78(+25.32) 7.16 15.91(+122.21)
Average 65.93 50.72(-23.07) 0.61 0.52(-14.75) 7.49 4.08(-45.53) 25.98 44.68(+71.98)

Each value in the BPD/BPD-L column is calculated as x
y
× 100%, where x is the number of outputs with a given label for an LLM, and y is the total

number of outputs. All experiments reported here are conducted on the refactoring tasks. Results for the insert comment tasks are provided in [21].

of [26]) are not exercised, showing the importance of using a
high coverage dataset.

D. RQ4: Improve Content Moderation of Code LLMs
As shown in Section IV-A, content moderation in Code

LLMs is often ineffective where harmful code is often gen-
erated (with or without warning), we propose to enhance the
robustness of content moderation using a two-phase approach
that performs content moderation before invoking a Code
LLM. To achieve this, we leverage function calling [48], a
commonly used mechanism in AI-assisted development that
enables LLMs to interact with external tools. Specifically,
we choose to enhance the content moderation capability
of Qwen2.5-coder:7b because it has the highest number of
“Pulls” on Ollama among the four evaluated Code LLMs [49],
indicating its widespread adoption. Additionally, it is the
only evaluated Code LLM on Ollama with the “tools” label,
implying that the other evaluated Code LLMs lack function-
calling (“tools”) support. By dynamically identifying user
intent, the model can invoke predefined tools for specific
tasks. In our implementation, we introduce a tool named
identify_harmful_keyword, which is sent as a param-
eter when a request is made to Qwen2.5-coder:7b. The tool
receives a keyword and performs an additional inference call
to Qwen2.5-coder:7b to assess its harmfulness. When harmful
content is suspected, the model autonomously invokes the tool
with the keyword as input. Upon evaluation, if the keyword
is deemed harmful, the model returns the response: “The
keyword [keyword] is harmful and inappropriate, I cannot
assist with that.” where [keyword] is replaced by the identified
words. Conversely, if the keyword is determined to be non-
harmful, the model proceeds with the code-related task. To
address the non-mandatory tool invocation in Ollama, we
introduce a retry mechanism with up to three attempts, improv-
ing moderation reliability while preserving model flexibility.

Table II shows the performance of Qwen2.5-coder:7b in
harmful code generation before (Qwen2.5-coder:7b) and after
our improvement (Qwen2.5-coder:7b++). With our improve-
ment, the harmful code generated via refactoring without a
warning message (GN ) decreased from 71.84% to 49.44%,
achieving a 31.18% reduction. Moreover, 34.50% of harmful
code generation requests were successfully declined with
warning messages (NR), reflecting a 483.76% improvement.
However, the results for harmful comment insertion remained
unchanged. This could be attributed to two factors: (1)
Qwen2.5-coder:7b is specifically designed for code, making
improvements more significant in code-related tasks than natu-

ral language, and (2) NN in Qwen2.5-coder:7b usually occurs
when it outputs the same input program without giving any
warning message indicating its refusal (low in explainability).

Finding 9: By introducing a function-calling-based content
moderation mechanism, Qwen2.5-coder:7b++ shows consid-
erable improvement in mitigating harmful code generation
(31.18% reduction in GN and 483.76% increase in NR).

V. RELATED WORK

Evaluation of Code Models. Prior evaluations on code models
focus mainly on robustness [16], [50], [51] or attacks of code
generation systems [52]–[54]. Our study differs by: (1) Prior
approaches perturb source code or docstrings, whereas ours
modifies only natural language instructions by constructing a
benign program dataset for testing, transformation tools such
as refactoring engines and Code LLMs, (2) our approach
has a different testing goal than prior approaches—CHT
injects harmful content into the prompts for coverage-based
harmfulness testing instead of testing for robustness, and (3)
we propose diversity-enhanced prompt synthesis that considers
various refactoring types that may introduce harmful content.
Testing related to harmfulness. Several approaches have
been proposed for testing AI-based systems (e.g., question an-
swering software [55], [56], sentiment analysis systems [57]–
[59]), and GenAI systems [60]–[64]. Most testing approaches
focus on identifying software discrimination across gender,
ages, and races [65]–[71]. The work most closely related
to our framework is the metamorphic testing of content
moderation software (MTTM [6] for textual content and
OASIS [7] for image content generation). Although CHT
shares similar goals with these approaches, CHT differs in
four key aspects: (1) CHT targets Code LLMs which take
as inputs natural language instruction, and code written in
programming language instead of textual/image content, (2)
CHT uses coverage-based testing to improve harm category
coverage instead of metamorphic testing, (3) CHT measures
output damage instead of checking if the content moderation
has been bypassed, (4) while the camel case conversion in
CHT can be seen as a textual perturbation, it represents
programming naming convention, and is different from the
11 perturbations in MTTM.
Alignment of AI Systems. Aligning with ethical values is
important for developing responsible AI systems. This process
includes data filtering [72]–[74], supervised fine-tuning [75],
[76], and reinforcement learning from human feedback [77]–
[79]. Several studies focus on the alignment of AI systems
in terms of social bias [60], [80]–[82], specific ethical issues



(e.g., safety [61], [83], stereotypes, morality, and legality [62],
[63]), adversarial prompts [84], [85], adversarial testing via red
teaming [4], [5], [86], and “jailbreaking” [87]–[90]. Similar to
these approaches, harmfulness testing aims to ensure the align-
ment of AI systems with respect to harmful content generation.
Different from these approaches, harmfulness testing aims to
identify harmful content generation in Code LLMs and access
its output damage via coverage-based testing.

VI. DISCUSSION AND IMPLICATIONS

We discuss several key implications for future research:
Harmfulness-aware name recommendation. Our study re-
vealed diverse types of transformations that can be used to
introduce harmful content into code. These transformation
either involves directly or indirectly selecting a identifier name
or inserting code comments. Although there are many pro-
posed approaches for identifier name recommendation [91]–
[93], none of these approaches are “harmfulness-aware” (i.e.,
do not consider the possibility of choosing a harmful keyword
as the name). Hence, our study aims to call for attention to
consider the ethical aspect during identifier name suggestion.
Code LLMs versus general LLM in harmful code genera-
tion. Our evaluation of four Code LLMs and one general LLM
(GPT-4o-mini) show that GPT-4o-mini generates the highest
number of harmful code compared to other LLMs designed
for code (Finding 6). This finding is somewhat surprising as
OpenAI has recruited “red teaming” to conduct adversarial
testing [4], [5], [86] but our evaluation shows that GPT-4o-
mini is still prone to harmful code generation despite the on-
going manual testing effort. This shows that an automated
testing approach like CHT that identifies harmful content in
auto-generated code is important to ensure adequate testing.
Systematic testing of harms. As the first harmfulness testing
framework that identifies harmful content in auto-generated
code, CHT lays the foundation for systematic testing of harms.
Particularly, the two components of CHT: (1) coverage-based
harmful content dataset and (2) output damage measurement
are the key enablers of a systematic testing approach. No-
tably, coverage-based harmful content dataset emphasizes the
importance of a coverage-based approach to ensure that all
the harm categories have been executed during the testing
process (Finding 8). Meanwhile, output damage measurement
highlights the importance of using a more fine-grained test
oracle to check for the potential risks of harms that can be
incurred by various types of generated outputs.
Detected problems in LLMs. Our output damage measure-
ment that is more fine-grained than prior approaches (that
check if content moderation has been bypassed [6], [7]) allows
us to detect various problems in LLMs: (1) GN that repre-
sents bugs in content moderation for code (most frequently
occurred in LLMs as shown in Finding 1), (2) NN that may
indicate problems in performing the transformation, (3) GR
that implies lenient code moderation that still generate harmful
code. These bugs show the needs to (1) improve the robustness
of content moderation of Code LLMs, and (2) enhance the
program transformations capability.

Responsible use of natural language in auto-generated
code. While prior study [1] observed that using harmful words
in naming software artifacts as an unethical behavior, this pa-
per revealed that there exist similar concerns on the responsible
use of natural language in Code LLMs. By converting phrases
into camel cases, Finding 9 shows that these harmful content
is more likely to bypass the content moderation of LLMs. As
there is recent trend of introducing programming education
to young children [94] and using LLMs for programming
education [95], our study calls for attention to responsible use
of natural language in auto-generated code.

VII. THREATS TO VALIDITY
External. Although there are other transformations (e.g., bug-
fixing) that can be misused for injecting harmful content, our
study mainly focuses on refactoring types in the online catalog.
However, our study have identified 32 different refactoring
types and emphasized on the importance of considering diverse
transformations. Meanwhile, our findings may not generalize
beyond Java as our benign program dataset only contains Java
programs, and the camel case conversion is based on Java
naming conventions. However, the idea of embedding harmful
content in identifier names is general and can be easily adapted
to other languages (e.g., snake case for Python).
Internal. Our implementation and scripts may have bugs that
can affect our results. To mitigate this threat, we make our
dataset, source code and scripts publicly available.
Conclusion. Conclusion threats of our evaluation and study
include subjectivity of manual analysis when answering RQ0
and analyzing the output damage measurement. We mitigate
the subjectivity of manual analysis by having two annotators
independently labeled each refactoring type/output damage,
and meet to resolve any disagreement.

VIII. CONCLUSION
Harmful content embedded in program elements within

source code may incur negative impact on mental health
of software developers. To understand the program trans-
formations that may be used to inject harmful content into
auto-generated code, we conduct a preliminary study that
revealed 32 transformations that can be used to inject harmful
content in Code LLMs. Based on our study, we propose
CHT, a novel coverage-based harmfulness testing framework
tailored for Code LLMs. Our evaluations show that content
moderation in LLM-based code generation systems is easy to
bypass where LLMs tend to generate harmful words/phrases
embedded within program elements without providing any
warning message (65.93% in our evaluation). To enhance
content moderation of Code LLMs, we proposed an approach
that first performs content moderation by checking for harmful
content before proceeding with code-related tasks. In future,
we envision our testing framework being incorporated into
Code LLMs to automatically identify harmful contents in code,
and eliminate them via censorship.
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[71] S. Morales, R. Clarisó, and J. Cabot, “A dsl for testing llms for
fairness and bias,” in Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems, ser.
MODELS ’24. New York, NY, USA: Association for Computing
Machinery, 2024, p. 203–213.

[72] J. Xu, D. Ju, M. Li, Y.-L. Boureau, J. Weston, and E. Dinan, “Recipes
for safety in open-domain chatbots,” 2020.

[73] J. Welbl, A. Glaese, J. Uesato, S. Dathathri, J. Mellor, L. A. Hendricks,
K. Anderson, P. Kohli, B. Coppin, and P.-S. Huang, “Challenges in
detoxifying language models,” 2021.

[74] B. Wang, W. Ping, C. Xiao, P. Xu, M. Patwary, M. Shoeybi, B. Li,
A. Anandkumar, and B. Catanzaro, “Exploring the limits of domain-
adaptive training for detoxifying large-scale language models,” Advances
in Neural Information Processing Systems, vol. 35, pp. 35 811–35 824,
2022.

[75] L. Ouyang et al., “Training language models to follow instructions with
human feedback,” Advances in neural information processing systems,
vol. 35, pp. 27 730–27 744, 2022.

[76] F. Bianchi, M. Suzgun, G. Attanasio, P. Röttger, D. Jurafsky,
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