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ABSTRACT

Static analyzers reason about the behaviors of programs without
executing them and report issues when they violate pre-defined
desirable properties. One of the key limitations of static analyzers
is their tendency to produce inaccurate and incomplete analysis re-
sults, i.e., they often generate too many spurious warnings and miss
important issues. To help enhance the reliability of a static analyzer,
developers usually manually write tests involving input programs
and the corresponding expected analysis results for the analyzers.
Meanwhile, a static analyzer often includes example programs in
its documentation to demonstrate the desirable properties and/or
their violations. Our key insight is that we can reuse programs
extracted either from the official test suite or documentation and
apply semantic-preserving transformations to them to generate
variants. We studied the quality of input programs from these two
sources and found that most rules in static analyzers are covered
by at least one input program, implying the potential of using these
programs as the basis for test generation. We present Statfier, a
heuristic-based automated testing approach for static analyzers that
generates program variants via semantic-preserving transforma-
tions and detects inconsistencies between the original program and
variants (indicate inaccurate analysis results in the static analyzer).
To select variants that are more likely to reveal new bugs, Statfier
uses two key heuristics: (1) analysis report guided location selection

that uses program locations in the reports produced by static ana-
lyzers to perform transformations and (2) structure diversity driven

variant selection that chooses variants with different program con-
texts and diverse types of transformations. Our experiments with
five popular static analyzers show that Statfier can find 79 bugs
in these analyzers, of which 46 have been confirmed.
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1 INTRODUCTION

Static analyzers check the behaviors of programs without executing
them to learn about their properties. When a program’s behavior
violates a desirable property, a static analyzer produces a warning—
or reports an issue—against the violation. Since they do not need
to run the programs under analysis, static analyzers are highly
applicable in various situations and have beenwidely used to ensure
the standard compliance, performance, reliability, etc., of programs
in various stages of their development processes.

As with other types of software systems, testing has been an
indispensable way to help developers ensure that a static analyzer
correctly implements its functionalities (i.e., performs its analy-
ses as expected). For example, the developers of PMD, a popular
static analyzer that detects performance and code style issues in
programs, manually crafted 2,983 programs as the input to verify
the tool’s behavior via testing. As manually writing tests for static
analyzers is tedious and expensive, various approaches have been
developed in the past few years to automatically test static analyzers
as black-box systems [19, 45, 67, 72]. For instance, prior work [72]
relies on feeding the same manually written input program to a pair
of static analyzers implementing similar rules to detect inconsis-
tencies between them. Although existing approaches have helped
developers detect various bugs in analyzers, the bug detection ca-
pacities of manually written or randomly generated input programs
are insufficient because the number of viable ways to implement
certain functionalities by combining different language constructs
is typically huge, while the number of those combinations covered
by the test programs of these approaches is often small.
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We identify two challenges in the automated testing of static
analyzers. The first challenge (C1) has to do with the unavailability
of automated test oracles (i.e., given execution of a static analyzer,
it is not always possible to automatically determine whether the
produced reports are correct or not). The test oracle problem is uni-
versal to the automated testing of many different types of systems,
and a popular technique to partially address the problem is differ-
ential testing, which essentially utilizes the behaviors of similar
applications or different implementations of the same application as
cross-references. Differential testing, however, is not always viable
for testing static analyzers because static analyzers usually check
different kinds of properties and correspondingly detect different
types of issues [32, 72], making their analysis reports seldom di-
rectly comparable. Prior work manually devised tailored oracles for
analyzers conducting specific analyses [19], but such an approach
is hard to generalize or scale. The second challenge (C2) lies in
the automated preparation of high-quality input programs for static
analyzers. Given a property checked by a static analyzer, for the
testing of the related analysis to be effective and efficient, the input
programs should not only contain the program elements essential for

the property so that the corresponding check will be activated but
also beminimal so that the analysis reports are easy to comprehend.
Such requirements make the preparation of high-quality test input
programs for static analyzers even more demanding.

In this paper, we propose the Statfier technique that effec-
tively detects bugs in a static analyzer by transforming existing test
programs in a semantic-preserving way (i.e., the transformations
should not change the behaviors of the programs), and compar-
ing the reports produced by the analyzer on those programs. To
address the first challenge, i.e., the test oracle problem, Statfier
employs metamorphic testing. Metamorphic testing uses metamor-
phic relations, i.e., relationships between the expected outputs from
multiple system executions, to determine whether the systems have
executed correctly or not, and it has been successfully applied to
verify compilers [27, 47, 68], machine learning systems [26, 74, 76],
and interactive debuggers [69]. Specifically, given an initial input
program for a static analyzer, Statfier iteratively applies semantic-
preserving transformations to the program to generate a group
of variant programs, runs the static analyzer on both the input
program and the variant programs, and compares the produced
analysis reports to determine whether the static analyzer contains
any fault. The rationale here is that, since the transformations are
semantic-preserving, input and variant programs should have same
behaviors, and the analysis reports produced by the analyzer on
the programs should also be equivalent. Therefore, if the analysis
reports for a pair of input and variant programs differ, an issue
has been found for the static analyzer. Furthermore, non-semantic
preserving transformations will produce variant programs that are
distinct from the input programs, almost inevitably violating the
metamorphic relation on which Statfier is built. Based on this
property, our transformations help ensure that the semantic errors
in the original programs are preserved after the variant generation.

To address the second challenge, Statfier utilizes the programs
within the existing test suites for the static analyzers or included
in the tool documentation as the input programs. Developers of
static analyzers often develop their own test suites, containing
both test input programs and the expected analysis reports, for

verification purposes, and they usually include example programs in
tool documentation to help explain the performed analyses. Given
that such programs are typically small, and they usually can activate
the checking of most rules supported by the corresponding static
analyzers, they make perfect input programs for Statfier.

Moreover, based on the observation that not all transformations
applied at all possible locations stand the same chance of affecting
the analysis reports, Statfier incorporates two heuristics to further
improve its effectiveness in bug detection: When choosing locations
from input programs to be transformed, the first heuristic, known as
analysis report guided location selection, prioritizes the ones already
included in analysis reports; When transforming variant programs,
the second heuristic, known as structure diversity driven variant

selection, prioritizes transformations that have not been applied yet.
We have implemented the Statfier technique into a tool with

the same name. The tool supports 12 types of semantic-preserving
program transformations gathered from existing literature [11, 23,
27, 49, 51, 65], and it reports a bug to the user if the results produced
by a static analyzer on an input program and a corresponding
variant program turn out to be different. To empirically evaluate
the effectiveness of Statfier and its heuristics, we have applied the
tool to detect bugs in five popular static analyzers, namely PMD,
SpotBugs, Infer, SonarQube, and CheckStyle.

Statfier successfully detected 79 bugs, of which 46 have been
confirmed by the developers of the corresponding static analyz-
ers, and 26 have been fixed by the developers. Moreover, the vari-
ant programs generated by Statfier for detecting 26 bugs have
been incorporated into the official test suites of the analyzers. The
experimental results suggest both heuristics are essential for the
Statfier’s effectiveness.

Overall, this paper makes the following contributions:
• We propose the Statfier technique to enhance the bug detection
capability of test suites in static analyzers by generating new
input programs using semantic-preserving transformations and
metamorphic testing. To improve the test generation, Statfier
employs two novel heuristics, namely analysis report guided
location selection and structure diversity driven variant selection;
• We empirically evaluated and confirmed the appropriateness of
using existing input programs to drive automated testing of static
analyzers with Statfier. Input programs from official test suites
and examples in documentation of static analyzers can activate
the checking of a high percentage of rules (e.g., up to 100% for
PMD and CheckStyle) during testing, and they are small in size;
• We have implemented the Statfier technique into a tool with the
same name and experimentally evaluated the tool by applying it
to detect bugs in five popular static analyzers. The experimental
results show that both Statfier and its heuristics are effective.

2 BACKGROUND: STATIC ANALYZERS

Static analyzers are software for automating program reasoning
with a myriad of applications in verification, optimization, and bug
finding. In our paper, we only consider static analyzers that can
produce analysis reports. Namely, given an input program, a static
analyzer usually adopts different program analysis techniques (e.g.,
data flow analysis and control flow analysis) to obtain the program
abstraction without execution. After that, they may produce an
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analysis report for users to identify potential issues when they
violate pre-defined desirable properties in the input program.

Although Statfier may be theoretically applied to any static
analyzers that can produce analysis reports, we focus on five ana-
lyzers in this paper, including PMD, SpotBugs, SonarQube, Check-
Style, and Infer. PMD [24] is a cross-language static analyzer that
finds common programming issues (e.g., unused variables). Rules
in PMD are written either in Java or XPath. SpotBugs [25] is a
fork of FindBugs (which is now deprecated) that detects common
issues in Java code via a set of issue patterns. SonarQube [64] is
a platform developed by SonarSource for continuous code inspec-
tion. CheckStyle [39] is used for checking if Java code adheres to
a coding standard. Infer [8] is a static analyzer designed by Meta
that detects issues for Java, C, C++, and Objective-C programs. We
select these tools because they (1) are widely used open-source
tools for Java programs, (2) have been used in prior studies on static
analyzers [3, 4, 18, 32, 42, 63], and (3) are representative of static
analyzers adopted for different purposes (e.g., SonarQube supports
automated code review, whereas CheckStyle checks coding style)
and by different companies (e.g., SpotBugs is used in Google [3],
whereas Infer is used in Meta [55]).

3 ILLUSTRATIVE EXAMPLE

Before presenting the heuristics used in Statfier, we first provide
the following definitions:

Definition 3.1 (Structurally diverse). We construct a new test pro-
gram 𝑃 ′ by applying a sequence of transformations 𝑇1, ...,𝑇𝑖 to the
input program with program contexts 𝐶1, ...,𝐶𝑖 (a program context
𝐶 denotes the type and location information of program element
to be transformed) where 𝑃 ′ is represented by {𝐶1 : 𝑇1, ...,𝐶𝑖 : 𝑇𝑖 }.
We consider 𝑃 ′ to be a structurally diverse program if the sequence
{𝐶1 : 𝑇1, ...,𝐶𝑖 : 𝑇𝑖 } applied to the original program 𝑃 to generate
𝑃 ′ are distinct among all generated variants, namely for any pair
𝐶𝑖 : 𝑇𝑖 and 𝐶 𝑗 : 𝑇𝑗 (𝑖 ≠ 𝑗 ) in the sequence are different.

Definition 3.2 (Differential analysis results). Given a program 𝑃

and a transformed program 𝑃 ′ (where 𝑃 ′ is obtained via a semantic-
preserving transformation to 𝑃 ), we consider a static analyzer 𝑆 gen-
erates differential analysis results if𝑜𝑝=invoke(𝑆 , 𝑃 ) and𝑜𝑝′=invoke(𝑆 ,
𝑃 ′) where |𝑜𝑝 | ≠ |𝑜𝑝′ |, |𝑜𝑝 | represents the type and number of warn-
ings from the report generated by running 𝑃 on a static analyzer.

We illustrate the general workflow of Statfier using an example
bug found by Statfier in PMD. Given a static analyzer under test 𝑆 ,
Statfier first extracts input programs from either the test suite of
𝑆 or the documentation of 𝑆 . Listing 1 shows a program 𝑃 extracted
from the official test cases in PMD [57]. PMD developers designed
the program 𝑃 for testing the “HardCodedCryptoKey” rule (i.e.,
checks if hardcoded values are used for cryptographic key).
Prior Approaches. Existing approaches that test static analyz-
ers [19, 67, 72] fail to find this bug because they rely on either
static analysis rule pairs [72] or specialized oracles [19, 67]. Specifi-
cally, the “HardCodedCryptoKey” rule cannot be tested by a prior
approach [72] that relies on differential testing of static analysis
rule pairs (only PMD supports this rule, and SonarQube does not

have the matching rule [73]). Meanwhile, an approach that ran-
domly generates and selects variants [19] wastes time in evaluating
variants that do not help discover new bugs in static analyzers.

To solve the limitations of prior approaches, we propose two key
heuristics, including (1) analysis report guided location (AL) and
structurally diverse variant selection (SS), which we will explain
using the example in Listing 1.

1 import javax.crypto.spec.SecretKeySpec;

2 public class Foo {

3 void encrypt () {

4 SecretKeySpec keySpec = new SecretKeySpec(

5 "Hardcoded Crypto Key".getBytes (),"AES");//

warning

6 }}

Listing 1: Original program 𝑃 (input program) that detects

HardCodedCryptoKey in PMD

1 import javax.crypto.spec.SecretKeySpec;

2 public class Foo {

3 void encrypt () {

4 + String str = "Hardcoded Crypto Key";

5 SecretKeySpec keySpec = new SecretKeySpec(str

.getBytes (), "AES"); // warning

6 }}

Listing 2: Transformed program 𝑃 ′ generated by Statfier

1 import javax.crypto.spec.SecretKeySpec;

2 public class Foo {

3 void encrypt () {

4 - String str = "Hardcoded Crypto Key";

5 + String str;

6 + str = "Hardcoded Crypto Key";

7 SecretKeySpec secretKeySpec = new

SecretKeySpec(str.getBytes (), "AES"); //

False negative

8 }}

Listing 3: Generated program by transforming 𝑃 ′ to 𝑃 ′′

Analysis Report Guided Location (AL). Given an input program
𝑃 for a given rule (e.g., “HardCodedCryptoKey” rule), Statfier
invokes 𝑆 to generate an analysis report for 𝑃 . Each analysis report
contains the line in which the rule violation occurs (e.g., line 4 in
Listing 1). After obtaining the line 𝐿 in which the violation occurs
and all statements within the backward slice of 𝐿 (no other state-
ment is data/control dependent on 𝐿 for this example), Statfier
systematically explores all semantic-preserving program transfor-
mations that are valid (fulfills the prerequisite for a given transfor-
mation) at line 𝐿. Listing 2 shows one such valid transformation
(program 𝑃 ′) that modifies line 4 in Listing 1 by extracting a local
variable str. For each transformed program that reports the same
rule violation as the original program, we keep them in a queue for
further modifications. In this example, program 𝑃 ′ causes the same
rule violation as the one reported in 𝑃 , so Statfier further modifies
it to 𝑃 ′′ by moving the assignment at line 4 (Listing 3). As Statfier
only introduces semantic-preserving program transformations, the
static analyzer 𝑆 should report the same rule violation for Listing 3.
However, when Statfier runs PMD for 𝑃 ′′, it gets differential anal-
ysis results, so we consider the missing rule violation as a false
negative (FN). We have reported this bug to PMD developers, and
it has been confirmed and fixed by developers. According to the
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developer’s feedback on the submitted issue, the problem occurs
because “The rule currently only checks the initializer of the vari-
able. In your code sample, the variable str is not initialized at all,
so the rule does not see a problem” [58].
Structurally Diverse Variant Selection (SS). As stated in Def-
inition 3.1, this approach represents each variant as 𝑃 ′ = {𝐶1 :
𝑇1, ...,𝐶𝑖 : 𝑇𝑖 } where 𝐶1, ...,𝐶𝑖 refers to the program contexts, and
𝑇1, ...,𝑇𝑖 denotes the sequence of transformation types applied to
the original input program 𝑃 . Specifically, we represent the variant
in Listing 2 by {𝐶1 : 𝑇1} = {StringLiteral, Line=4, Column=[52,72],
“Extract local variable”}. To guide the search toward structurally
diverse variants, this approach avoids selecting a new variant 𝑘
where the context and the selected type of semantic-preserving
transformation is the same as in Listing 2 (e.g., 𝐶𝑘=𝐶1 and 𝑇𝑘=𝑇1).
Compared to a random approach that searches through 112 vari-
ants, the SS approach is more efficient as it can find the same bug
in Listing 3 after iterating through only 51 variants.

4 METHODOLOGY

Algorithm 1: Algorithm for Heuristic-based Automated
Testing of Static Analyzers
Input: Input programs Progs for a rule 𝑅 in a static analyzer 𝑆 , a set of

transformations Trans, timeout 𝑡𝑖𝑚𝑒𝐿

Output: A set errP with test programs that give differential analysis results
1 errP ← ∅
2 normP ← ∅
3 disSeq← ∅
4 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑇𝑖𝑚𝑒𝑟 (𝑒𝑥𝑒𝑐𝑇𝑖𝑚𝑒)
5 for 𝑃 ∈ Progs do
6 𝑄 ← initQueue(𝑃 )
7 while execTime ≤ 𝑡𝑖𝑚𝑒𝐿 do

8 currP ← deqeue(𝑄)
9 (𝑛𝑢𝑚𝑊𝐵 , 𝑡𝑦𝑝𝑒𝑊𝐵 , 𝑙𝑜𝑐𝐵 )← 𝑟𝑢𝑛(currP)

10 𝑙𝑜𝑐𝑠 ← getBackwardSlice(currP , 𝑆 , 𝑙𝑜𝑐𝑏 )
11 for 𝑙𝑜𝑐 ∈ 𝑙𝑜𝑐𝑠 do
12 𝑛𝑜𝑑𝑒𝑇 𝑦𝑝𝑒 ← getASTNode(𝑐𝑢𝑟𝑟𝑃 , 𝑙𝑜𝑐)
13 for 𝑡 ∈ 𝑇𝑟𝑎𝑛𝑠 do

/* select structurally diverse variant */

14 if (nodeType, 𝑡 ) ∉ disSeq then

15 disSeq← disSeq ∪ (nodeType, 𝑡 )
16 newP ← transform(currP , 𝑡 , 𝑙𝑜𝑐)
17 if isDifferential(newP , numW𝐵 , typeW𝐵 ) then
18 𝑒𝑟𝑟𝑃 ← errP ∪ {𝑛𝑒𝑤𝑃 }

19 else

/* store new variants */

20 normP ← normP ∪ {newP}

21 Q←𝑄.enqeue(𝑛𝑜𝑟𝑚𝑃 )

22 return 𝑒𝑟𝑟𝑃

23 Func isDifferential (newP , numWarn𝐵 , typeWarn𝐵 ):

/* run new program on static analyzer */

24 (numWarn𝐴 , typeWarn𝐴 , 𝑙𝑜𝑐𝐴)← 𝑟𝑢𝑛(newP)
25 return numWarn𝐵 ≠ numWarn𝐴 or typeWarn𝐵 ̸= typeWarn𝐴

Figure 1 gives an overview of Statfier. Given an input program,
Statfier applies semantic-preserving transformations and uses
variant selection to get a reduced set of variants, which are run
against the static analyzers to check for differential analysis results.
After obtaining variants that produce differential analysis results,
Statfier will use them as input programs to trigger bugs in static

Semantic-
preserving Program 

Transformations

Reduced Variants

Variant 
Selection

Automated 
Testing

Reports

Differential 
Analysis

Result

Input 
Program

Static Analyzer

Figure 1: Overview of Statfier

analyzers under test. Algorithm 1 shows our test generation al-
gorithm. Our algorithm consists of four components: (1) variant
generation, (2) selection of program location for transformation,
(3) variant selection, and (4) feedback-driven exploration. Given a
set of input programs 𝑃𝑟𝑜𝑔𝑠 for a rule 𝑅 in a static analyzer 𝑆 , a
set of semantic-preserving transformations 𝑇𝑟𝑎𝑛𝑠 , and a timeout
𝑡𝑖𝑚𝑒𝐿, our test generation algorithm produces a set of programs
that indicate bugs for the rule 𝑅 in the static analyzer 𝑆 . Specifically,
Statfier initializes the algorithm parameters at lines 1–4 of the
algorithm, whereas lines 5–22 are the core logic of the algorithm.
After initializing the output set 𝑒𝑟𝑟𝑃 (line 1), the normal variant
set 𝑛𝑜𝑟𝑚𝑃 (line 2), and a set 𝑑𝑖𝑠𝑆𝑒𝑞 for variant selection (line 3),
Statfier retrieves the first element of 𝑄 as the program 𝑐𝑢𝑟𝑟𝑃

to be transformed (line 8), and runs a static analyzer on 𝑐𝑢𝑟𝑟𝑃 to
obtain the number, type, and location of warnings (line 9). After
that, it performs backward slicing to obtain all related locations
𝑙𝑜𝑐𝑠 and gets the corresponding node type 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒 at lines 10–12.
Finally, it applies each transformation 𝑡 in 𝑇𝑟𝑎𝑛𝑠 to 𝑙𝑜𝑐 iteratively
and performs structure diversity driven variant selection at lines
13–16. At lines 17–20, the isDifferential function compares the
two analysis reports of 𝑐𝑢𝑟𝑟𝑃 and 𝑛𝑒𝑤𝑃 to detect potential bugs. If
no bugs are found, 𝑛𝑒𝑤𝑃 will be added into 𝑄 (line 21). Note that
instead of generating an extensive test suite for checking all rules
in a static analyzer, our test generation algorithm produces test
programs for each rule separately because each rule has its own
set of input programs (mixing together input programs of different
rules will make it difficult to isolate the bug).

4.1 Selection of Input Programs

As stated in C2, before automated testing static analyzers, we need
to obtain input programs with high rule coverage as the initial set
to be transformed. Static analyzers rely on rule checkers to detect
problems under a given program. To help users understand the
reported rule violations, static analyzers usually include code ex-
amples to explain the problematic code. Hence, our key insight to
solve C2 is the input programs designed by the developers of static

analyzers can address the challenge in constructing input programs

which can trigger more rule violations. Based on this insight, we ex-
tract input programs from two sources: (1) the official test suite and
(2) code examples of each rule given in the documentation of the
static analyzer. When extracting input programs from the provided
test suite, we first obtain the folder storing the input programs of a
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Table 1: Rule coverage of input programs for all evaluated static analyzers

Analyzer
Tests within the test suite Documentation Combined Rule

Coverage (%)#𝑜 𝑓 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑟𝑢𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜 𝑓 𝑟𝑢𝑙𝑒𝑠
Rule Coverage (%) #𝑜 𝑓 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑟𝑢𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜 𝑓 𝑟𝑢𝑙𝑒𝑠
Rule Coverage (%)

PMD 274
274 100% 273

274 99.64% 100%
SpotBugs 360

458 78.60% 52
458 11.35% 78.60%

SonarQube 581
617 94.17% 587

617 95.14% 95.30%
CheckStyle 183

183 100% 159
183 86.89% 100%

Infer 67
92 72.83% 30

92 32.61% 77.18%
Overall 1410

1624 86.82% 1101
1624 67.8% 88.79%

static analyzer (e.g., src/test/resources/net/sourceforge/pmd/lang/-
java/rules for PMD), and automatically crawl the folder to obtain
the input programs for each rule. To reuse code examples in doc-
umentation, we manually create a complete input program from
the code snippets in documentation by adding the missing (1) vari-
able/method/class declarations and (2) import statements. Our goal
is to obtain as many input programs as possible to maximize rule
coverage (the percentage of rules checked by a static analyzer that
contains at least one input program) and to test different behaviors
of the covered rule checker. After obtaining the input programs,
we run them against the static analyzer (in which the input pro-
grams originated from) to measure their quality. Furthermore, 86%
of extracted input programs have more than one violation, 8% have
one violation, and the rest 6% have no violations.

Since the input programs are from two sources (the official doc-
umentation and test suites), we study the rule coverage achieved
by input programs from different sources, both separately and as
a whole. Particularly, we manually analyzed the official documen-
tation of each analyzer and counted the rules mentioned in the
documentation as the total number of rules supported by each tool.
Meanwhile, we ran each static analyzer on all input programs ex-
tracted for it and considered a rule to be activated, or covered, if and
only if an issue was reported because a rule violation was detected
in an input program. Table 1 shows the rule coverage information
for all evaluated static analyzers. The second and the third columns
denote the ratio of covered rules and the rule coverage given by the
input programs within the test suite, whereas the fourth and fifth
columns show similar measurements given by the documentation
of each rule. Given the set𝑇 of the rule covered by the test suite and
the set 𝐷 of the rule covered by the documentation, the “Combined
Rule Coverage (%)” presents the overall rule percentage of 𝑇 ∪ 𝐷 .

Instead of obtaining input programs from a test suite, an al-
ternative approach is to extract them from real-world projects.
However, the prior evaluation [72] that uses input programs from
2,728 projects shows that this alternative approach can only achieve
74%–89% rule coverage for four static analyzers. Another alterna-
tive is to adopt Defects4J [43], which is a widely used dataset with
defects for Java programs. However, prior studies [33] revealed
that the rule coverage achieved by static analyzers in Defects4J
is only around 2%–4%. Compared to these alternatives, our study
shows that reusing programs from a test suite of static analyzers

can cover more rules and more analyzers. As shown in the third
column of Table 1, rule coverage achieved by the test suites of static

analyzers ranges from 72.83%–100%, specifically all rules in PMD
and CheckStyle can be covered. Our study of the test suite of ana-
lyzers also gives evidence for the hypothesis that most bugs have
small counter-examples [41] because we observed that test input
programs in analyzers are small, i.e., they have an average of 1.25
classes (max=30), 3.16 methods (max=106), 1.33 fields (max=1000),
and 49.42 lines of code (max=65544).

Based on the combined rule coverage, we observe that the rule
coverage of SpotBugs, CheckStyle, and SonarQube can be further
improved if we add code examples from the documentation. More-
over, some analyzers are equipped with at least one input program
for each implemented rule (e.g., CheckStyle have combined rule
coverage of 100%). The high combined rule coverage achieved by
these input programs confirms our intuition that these input pro-
grams can be used as the initial set of input programs for testing

analyzers.

4.2 Variant Generation via Semantic-Preserving

Program Transformations

Given an input program 𝑃 , Statfier produces variants by apply-
ing a set of program transformations (line 16 in Algorithm 1), and
these transformations should be semantic-preserving. To obtain a
comprehensive set of transformations, we refer to existing related
literature thoroughly [11, 23, 27, 49, 51, 65]. We use the following
design principles when selecting transformations:
Multi-level Transformations: Based on the program elements
to be transformed, we divide the space of transformations into
five levels: variable, expression, statement, method, and class. We
adopted the transformations from existing literature [11, 23, 27,
49, 51, 65] for the first four levels (i.e., variable, expression, state-
ment, method). As there is no prior approach that uses class-level
semantic-preserving transformations, we refer to GitHub issues of
static analyzers for the class-level transformations [21, 22, 56].
Dead and Live Code Injections: We include both kinds of trans-
formations which can inject dead code (e.g., “Unreachable code in-
jection”) [49, 65] and live code (e.g., “Statement wrapping”) [27, 51]
into the original program.
Incorporating Analysis Capability of Each Static Analyzer:

Considering the trade-off between accuracy and efficiency, static
analyzers may support different levels of analysis capabilities for
producing more precise or faster analysis. For example, Infer and
SonarQube support inter-procedural analysis, but PMD and Spot-
Bugs only support intra-procedural analysis. For analyzers that
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Table 2: Semantic-preserving program transformations supported in Statfier

Level Transformation Example Source

Variable-level Extract local variable
- invoke_method (" String Literal ");

+ String str = "String Literal ";

+ invoke_method(str);

[11, 51]

Move assignment
- int var = 10;

+ int var;

+ var = 10;

[11]

Expression-level

Equivalent boolean expression:
Add | |𝑓 𝑎𝑙𝑠𝑒 or &&𝑡𝑟𝑢𝑒 expression
Swap symmetrical elements, e.g., 𝑎 == 𝑏 → 𝑏 == 𝑎

- boolean tag = true;

+ boolean tag = true || false;
[27, 31]

Equivalent arithmetic expression:
Add +0, -0, or +1-1 expression

- int value = 10;

+ int value = 10 + 0;
[2, 27]

Add parenthesis to expression - int value = 10;

+ int value = (10);
[11, 23]

Statement-level

Equivalent statement conversion:
Convert to equivalent for/while/do-while/lambda

- for(i = 0; i < 1; i++) {}

+ i = 0;

+ while(i++ < 1) {}

[11]

Statement wrapping:
Wrap statements with if/while/for/do-while

- target_statement;

+ if(true) { target_statement; }
[27, 65]

Dead code injection:
Insert dead if/while/for statement

target_statement;

+ for(int i = 0; i < 0; ) { target_statement; }
[49, 51]

Method-level Encapsulate field
- SecretKeySpec (" Hardcode ");

+ String getHardcode () { return "Hardcode "; }

+ SecretKeySpec(getHardcode ());

[11, 23]

Class-level
Nested class wrapping - original_program;

+ class NestClass { original_program; }
[21]

Anonymous class wrapping - original_program;

+ Object c = new Object () { original_program; };
[22]

Enum wrapping - original_program;

+ enum enumClass { original_program; }
[56]

do not support inter-procedural analysis, variants generated via
method-level program transformation (i.e., Encapsulate field) are
not meaningful as detecting these variants is beyond its analysis
capability. We integrate the analysis capability of each studied ana-
lyzer by excluding transformations that are beyond its capability.
No Style-Related Transformation: We exclude transformations
that can change coding style (e.g., changing comments or identifier
names) because (1) these transformations may trigger inaccurate
differential analysis results in tools like CheckStyle that check cod-
ing standards, and (2) transformations such as renaming requires
encoding Java naming conventions into the transformation rules,
which is beyond the scope of this paper. Specifically, we exclude all
transformations in “Level 1–Changes to Comments&Indentation”
and “Level 2–Changes to Identifiers” from prior work [11].

Table 2 shows the 12 types of semantic-preserving program trans-
formations supported in Statfierwhere we include an example for
each transformation. The “Source” column indicates the relevant
work in which we derived the corresponding transformation from.

4.3 Heuristic-Based Testing Process

After applying semantics-preserving transformations, Statfier
first feeds all variants to static analyzers and obtains analysis re-
ports, then performs differential analysis to determine if there is
a bug. The core factors that affect the efficiency of testing are (1)
identifying locations to be transformed and (2) removing redundant

variants that are unlikely to trigger new bugs. Hence, we designed
several heuristics below to accelerate the testing process:
Analysis Report Guided Location Selection The program loca-
tions in which we choose to apply the transformations will affect
the effectiveness of variant generation and selection. Our main in-
sight is that we can select the program locations for transformations

based on the locations that are listed in the analysis report gener-

ated by static analyzers. Specifically, given an input program 𝑃 ,
Statfier applies the static analyzer on 𝑃 to obtain (1) the num-
ber of warnings reported by the static analyzer and (2) the pro-
gram locations in which the analyzer reports violations (line 9 in
Algorithm 1). Instead of relying solely on the reported program
locations that may be incomplete, our goal is to obtain the set of
locations that have either control or data dependency with respect
to each program location stated in the analysis report. Hence, af-
ter executing the program against the static analyzer under test,
Statfier obtains the backward slice of the program starting from
each program location stated in the analysis report. Specifically, the
getBackwardSlice(currP , 𝑆 , 𝑙𝑜𝑐𝑏 ) function takes as input (1) the
input program 𝑐𝑢𝑟𝑟𝑃 , (2) the static analyzer under test 𝑆 , and (3)
the program locations 𝑙𝑜𝑐𝑏 for the reported violations to produce a
set of locations 𝑙𝑜𝑐𝑠 that include all locations stated in the analysis
report, together with their backward slices (line 10 in Algorithm 1).
This step produces a set of program locations in which we will
apply the set of semantic-preserving transformations. As we use
an analysis report to guide the selection of program locations, we
call this step analysis report guided location selection.
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Structure Diversity Driven Variant SelectionGiven a set of vari-
ants, we propose structure diversity driven variant selection to ob-
tain a subset of variants that are more likely to trigger distinct bugs
in static analyzers. Specifically, given an original program 𝑃 , we
represent each of its variant 𝑃 ′ = {𝐶1 : 𝑇1, ...,𝐶𝑖 : 𝑇𝑖 } by checking
(1) the program context 𝐶1, ...,𝐶𝑖 under which each transformation
has been applied to, and (2) the transformation types 𝑇1, ...,𝑇𝑖 that
have been applied starting from 𝑃 . Given a transformed program
location 𝑙𝑜𝑐 , we determine the program context by checking for the
AST node type as follows: (1) if the AST node at 𝑙𝑜𝑐 is a leaf node,
we use its AST node type (e.g., operand) as the program context,
(2) if the AST node at 𝑙𝑜𝑐 is a non-leaf node, we use the AST node
type of the root of the subtree (e.g., if-statement) to represent the
program context. As shown at lines 11–16, Statfier checks if the
current program context (represented by 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒) and transfor-
mation type (represented by 𝑡 ) exist in the previously encountered
sequence 𝑑𝑖𝑠𝑆𝑒𝑞. This selection aims to eliminate variants with the
same program context and use the same transformation type as
previously chosen variants. Subsequently, all the selected variants
are structurally diverse (refer to Definition 3.1).
Feedback-Driven Exploration The test generation algorithm of
Randoop avoids extending illegal method sequences (e.g., those
that lead to exceptional behavior) based on the feedback obtained
from executing test inputs during test generation [53]. Inspired by
Randoop’s test generation algorithm, we use a feedback-driven
approach for our test generation by avoiding further exploration
of input programs that lead to differential analysis results (refer to
Definition 3.2), essentially incorporating feedback obtained from
running a static analyzer. At lines 17–21 in Algorithm 1, we store the
newly transformed program 𝑛𝑒𝑤𝑃 into the 𝑛𝑜𝑟𝑚𝑃 set for further
extension of legal program sequences (those that do not lead to
differential analysis results) and return all programs within the 𝑒𝑟𝑟𝑃
set that contains programs that indicate bugs in a static analyzer.

Statfier inspects differential analysis results in the isDifferen-
tial function in Algorithm 1. The function (1) runs the transformed
program on the given static analyzer (line 24), and (2) compares
the number and type of warnings before and after applying the
transformation and returns true if the number of warnings differs
(line 25). In general, the differential analysis results represent two
cases: (1) a false negative (FN) in 𝑆 if the original program 𝑃 pro-
duces a warning in 𝑆 but the transformed program 𝑃 ′ does not give
a warning (a warning is missing), and (2) a false positive (FP) in 𝑆

if the original program 𝑃 does not produce a warning but the trans-
formed program 𝑃 ′ leads to a warning (indicates a false warning).
Furthermore, we also add a filter that checks for the newly added
types of reported warnings to remove false positives.

5 EVALUATION

We applied Statfier on five analyzers (PMD, SpotBugs, CheckStyle,
SonarQube, and Infer) to address the research questions below:

RQ1: How many unique bugs can Statfier find? What are the
characteristics of these bugs?
RQ2: Can the proposed heuristics in Statfier reduce the number
of variants while preserving its bug finding capability?
RQ3: How many bugs can each transformation find?

5.1 Experimental Setup

We implemented semantic-preserving program transformations
and backward slicing using the Eclipse JDT library with over 7000
lines of Java code. We did not use existing slicers because (1) using
the same library for program transformations and slicing will make
it easier to traverse and match the AST, and (2) Eclipse JDT library
has been widely used for semantic-preserving transformations (e.g.,
it supports refactoring operations [28]). Specifically, Statfier con-
structed the program dependency graph based on Eclipse JDT and
extracted the control and data dependency information. As most
static analyzers cannot perform inter-procedural analysis well, we
only construct the intra-procedural backward slicing without alias
analysis. Based on our experiment [60] for selecting appropriate
parameters, we set the time limit 𝑡𝑖𝑚𝑒𝐿 of each static analyzer to
be six hours (which includes transforming and checking all input
programs for an analyzer) for running Statfier in RQ1 and RQ2.
For each rule in each analyzer, we reuse the configuration in the
test case if available; otherwise, we use the default configuration
recommended by the analyzer. For static analyzers that require
compilation (e.g., SpotBugs), we compile each program using Ora-
cle JDK 8 and 11. All experiments were conducted on a machine
with Intel Xeon 6134 CPU and 192GB RAM.

5.2 RQ1: Assessing Effectiveness of Statfier

We use the number of discovered unique bugs to evaluate the effec-
tiveness of Statfier. Notably, we consider a bug to be a unique
bug if it is in (1) different rule checkers triggered by various trans-
formations, (2) different faulty locations (determined by root cause
diagnosis) in a static analyzer, and (3) not the 14 false positives
discussed in Section 5.3. We use this definition of unique bug be-
cause static analyzer developers (1) adopt a similar definition when
checking for duplicate bugs [20, 40], and (2) usually repair faults
for different rules in different program locations for corresponding
rule checkers. Specifically, we adopt the type of rule checker and
applied transformation to automatically cluster variants which lead
to differential analysis results. We consider variants in the same
cluster as equivalent and randomly pick one representative variant
from each cluster. After automated clustering differential analysis
results based on our definition of a unique bug, Statfier can find
79 bugs that span across all of the evaluated static analyzers.
Status of Reported Bugs.We have reported the 79 unique bugs to
developers of static analyzers. Table 3 shows the current status of
our submitted issues. We classify these issues into four categories
based on the responses that we have received from developers of
static analyzers so far. The categories are listed below:

(1) Fixed: the issue was fixed by a merged pull request.
(2) Confirmed: the issue was confirmed by the developer but

not fixed so far.
(3) Pending: we have not received a response from developers.
(4) Won’t fix: the developer acknowledged that the bug is a

limitation of the static analyzer but will not fix it.
Among all the evaluated static analyzers, we observe that Stat-

fier finds the most significant number of bugs in PMD. This is
because PMD has the highest rule coverage with the greatest num-
ber of input programs (as shown in Table 1). With more input
programs, our approach can further transform these programs,
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Table 3: The status of submitted GitHub issues

Issue status PMD SpotBugs SonarQube CheckStyle Infer Overall
Fixed 14 3 5 4 0 26
Confirmed 11 3 5 2 0 21
Pending 19 6 0 1 3 29
Won’t fix 0 0 2 1 0 3
Total 44 12 12 8 3 79

Table 4: The number of detected bugs by different approaches

Approach PMD SpotBugs SonarQube CheckStyle Infer Overall
Statfier 44 12 12 8 3 79

[31] 1 0 0 0 0 1

making it more likely to discover new bugs in PMD. For each bug
found by Statfier, we manually inspect it to filter FPs and report
to developers only after checking for its validity. As illustrated in
Table 3, except for “Won’t Fix” where developers have decided not
to fix the bugs, all our reports are perceived positively by developers
(i.e., we did not have any rejected bug reports), and nearly half of
them have been fixed or confirmed. It is worthwhile to note that
Statfier generated variants for 26 of the submitted bugs have been

integrated into official test suites by the developers of static analyz-
ers, demonstrating the importance of input program generation
for testing static analyzers. Moreover, as SonarQube is the only
evaluated analyzer that uses Jira for issue tracking, we manually
checked the assigned severity of the reported bugs. Among the 10
confirmed bugs in SonarQube, 7 are marked as major, 3 are minor.
Comparison with Mutation Testing Approach. We also evalu-
ate Statfier against a mutation testing based approach [31] that
compares the effectiveness of static analyzers. It considers a static
analyzer kills a mutant when the number of warnings increases
with mutation and adopts the Universal Mutator [30] for the mu-
tation process. As the tool for prior approach [31] is not publicly
available, we re-implement it by (1) using the open-source Uni-
versal Mutator [30], and (2) reproducing the oracle in their paper
(i.e., the number of warnings or errors increases). To ensure a fair
comparison, we measure its effectiveness in detecting bugs in static
analyzers using the same timeout as Statfier. Table 4 demonstrates
the comparison result. Among 472637 mutants generated for all
static analyzers, it only finds one real bug in PMD and produces two
false positives in SpotBugs. The result indicates the prior mutation
testing approach is less effective than Statfier in finding bugs.
Limitations.We notice two limitations of our approach during the
manual analysis of the bugs found. Firstly, as common in a testing
tool, our approach may produce FPs (the discovered defects are not
real defects). For example, when applying the “Statement wrapping”
transformations to wrap code with if-statement, SpotBugs may
report one more DB_DUPLICATE_BRANCHES warning, but this
extra warning is triggered by our applied transformation (not a real
bug) because this rule detects duplicate if-else branches. However,
in our experiment, we only find 14 FPs, and they are excluded from
Table 3 and Table 6. Our filter can remove these FPs automatically.
The second limitation is that the tested static analyzers need to be
able to generate an analysis report, and the report should include
the warning types and locations. Currently, Statfier does not aim
to test important static analyses such as call graph analysis and
pointer analysis which may not produce reports that contain line

Table 5: The statistics for root causes of bugs in static analyzers

Root cause PMD SpotBugs SonarQube CheckStyle Infer
Variable declaration 13 3 6 0 1

Complex class structure 12 4 0 3 1
Control flow structure 8 2 5 1 1
Compound expression 10 1 1 3 0

Java version and new features 1 2 0 1 0

information. In the future, it is worthwhile to investigate how to
extend our technique to support other types of analysis (e.g., we can
perform differential analysis on the reports of info-flow analysis
between input program and its variants as their behaviors should
be equivalent).
Root Causes of Found Bugs.Wemanually analyze the root causes
behind the found bugs and summarize them into six categories.
Table 5 shows the numbers of each root cause for these bugs. This
table is sorted in descending order by the number of discovered
issues. We discuss representative examples of each category below:

5.2.1 Variable Declaration. When analyzing variables, rules in
static analyzers either (1) only check for direct initialization or
(2) fail to analyze declarations at the global level. For example,
Listing 3 shows that PMD fails to detect the hardcoded key of the
assignment statement at line 6 as it does not analyze the usage
for the str variable. Statfier also found FNs due to incomplete
analysis of global variables (fields). Figure 2 shows an example [6]
where Infer fails to report the null pointer dereference for the field
at line 6 but can detect the dereference if color is a local variable.

1 enum Color { BLACK , WHITE; }

2 public class SwitchCase {

3 + Color color = null;

4 public String switchOnNullIsBad () {

5 - Color color = null;

6 switch(color) { ... // should report a warning

Figure 2: A null dereference bug in Infer

5.2.2 Complex Class Structure. Static analyzers need to retrieve
methods or fields within classes, but the retrieval can be incomplete
if the given program’s class structure is complex, e.g., when there
are nested classes. Figure 3 shows such an example in SpotBugs for
the MS_EXPOSE_REP rule (this rule detects a security flaw when a
public static method returns a reference to an array that is part of
the static state of the class) [7]. Given the original input program,
SpotBugs can report an issue as the method faultMethod leaks
the private field key. However, after transforming the program
via “Nested class wrapping”, SpotBugs detector “FindReturnRef”
for this rule cannot detect the reference in the nested class. The
developer has prepared a fix for the bug soon after reporting.

5.2.3 Control Flow Structure. Our manual analysis shows that pro-
grams with complex control flow structures can lead to unexpected
results in static analyzers. For example, the PMD rule UseString-
BufferForStringAppends recognizes the use of the += operator for
appending strings and warns that the operator causes the JVM to
use an internal StringBuffer, which is inefficient. Figure 4 shows
an example [71] where PMD reports one warning for this rule at
line 3 and two duplicated warnings (warnings that are exactly the
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1 private static String [] key;

2 + static class nestedClass {

3 public static String [] faultMethod () {

4 return key; // should report a warning

5 }

6 + }

Figure 3: An FN for the ruleMS_EXPOSE_REP in SpotBugs

same) for the same rule at line 5. Although line 3 and line 5 are
equivalent, the duplicated warnings at line 5 show two problems
in PMD: (1) an FP caused by the statements, (2) the failure to filter
duplicated warnings. Moreover, our analysis also shows that some
rule checkers in static analyzers may fail to support different control
flow structures (e.g., SonarQube can detect infinite for and while
loops but does not consider do-while loop [5], and the developer
has fixed the bug upon receiving our bug report).

1 public void bar() {

2 String x = "foo";

3 x += "bar" + x; // report one warning

4 + if (false) {

5 + x += "bar" + x; // report duplicate warnings

6 + }}

Figure 4: An FP for the rule UseStringBufferForStringAppends

5.2.4 Compound Expression. When analyzing compound expres-
sions such as parenthesized expression and binary expression, static
analyzers like PMD may fail to check the subexpression either due
to (1) incomplete AST node representation (the Java AST library in
PMD does not model ParenthesizedExpression as an AST node
type, but its JavaScript AST library does not have this problem) or
(2) fail to traverse the subexpression. Figure 5 shows a false positive
example [79] for the PMD rule RedundantFieldInitializer that detects
a redundant initialization (assigning a field to its default values).
The FP occurs because PMD fails to check the subexpression by
traversing only the first operand (value 0 is the default value for a
char) in the binary expression and mistakenly reports the field c
to be a redundant initialization.

5.2.5 Java Version and New Feature. With the release of new Java
versions, new bugs may occur in static analyzers either due to (1)
the differences in the generated Java bytecodes or (2) insufficient
support of new language features (e.g., lambda expression). When
communicating with developers of static analyzers, they noted that
the bug failed to reproduce in different java versions, pinpointing
the root causes to be the different Java versions used. For example,
the DMI_INVOKING_TOSTRING_ON_ARRAY rule in SpotBugs can
detect the issue shown in Figure 6 when we compile with Java 8
but SpotBugs fails to detect the issue when using newer Java ver-
sions (Java 11, 16, 17) [78]. In our experiment, we only tested input
programs with Java 8 and 11. It is worthwhile to study a differential

1 - char c = 1;

2 + char c = 0 + 1; // should not report a warning

Figure 5: An FP for the rule RedundantFieldInitializer

Table 6: Number of bugs detected across five seeds

Analyzer RL*RS [19] AL*RS RL*SS AL*SS (Statfier)
PMD (0, 0, 0) (36, 40, 38) (0, 0, 0) 44

SpotBugs (0, 0, 0) (11, 12, 12) (0, 0, 0) 12
SonarQube (0, 0, 0) (11, 12, 12) (0, 0 ,0) 12
CheckStyle (0, 0, 0) (7, 8, 7) (0, 0, 0) 8

Infer (0, 0, 0) (3, 3, 3) (0, 0 ,0) 3
Total/Avg (0, 0, 0) (68, 75, 72) (0, 0, 0) 79

testing approach that checks the input programs against different
Java versions in the future, especially for analyzers like SpotBugs
that act on bytecodes. For the new language feature example, the
CheckStyle rule ParameterAssignment that detects assignment to
parameters fails to recognize parameters in the lambda expression
list.forEach((i)→{i*=10;}); [38]. We reported this bug and
it has been fixed by the CheckStyle developer.

1 + final String [] gargs = new String []{"1" , "2"};

2 public void print() {

3 - final String [] gargs = new String []{"1" , "2"};

4 System.out.println(""+gargs);} //need a warning

Figure 6: An FN caused by Java version in SpotBugs

5.3 RQ2: Assessing Effectiveness of Heuristics

We construct several baselines below to measure the effectiveness
of different heuristics in Statfier:
Random Location (RL): An approach that randomly selects pro-
gram locations to transform.
Analysis Report Guided Location (AL): An approach that uses
analysis reports for selecting program locations (see Section 4.3).
Random Variant Selection (RS): An approach that randomly se-
lects variants generated via semantic-preserving transformations.
Structurally Diverse Variant Selection (SS): An approach that
selects structurally diverse variants (see Section 4.3).

Although there are several prior approaches that test static ana-
lyzers [19, 45, 67, 72], most of them do not generate variants [67, 72]
so we exclude them from comparison. To ensure a fair comparison
with prior work that uses Csmith for generating variants for C
programs via random mutations [19], we emulate prior work using
the baseline RL*RS that reuses the same set of transformations and
oracle (differential analysis results) but randomly selects variants
and locations to transform. When generating new variants by RL,
we remove duplicated variants and set the number of transforma-
tions equal to AL to ensure fairness. As all approaches (except
for Statfier that uses AL*SS) rely on randomized algorithms that
may produce different results across different runs, we re-run each
randomized approach five times with different random seeds.

Table 6 shows the effectiveness of each evaluated approachwhere
each cell represents the (minimum, maximum, median) number
of detected bugs by the four approaches (note that Statfier that
uses AL and SS is deterministic, so we do not need to rerun it five
times). We observe that all approaches that use “Random location
(RL)” fail to detect any bug in all evaluated static analyzers, in-
cluding RL*RS that emulates prior work [19]. Indeed, as the RL
approaches can skip the static analysis steps (i.e., analysis report
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Table 7: Variant selection percentage for AL*SS versus AL*RS

Seed PMD SpotBugs SonarQube CheckStyle Infer Average
S1 329492(60.09%) 7444(56.56%) 58012(49.76%) 26301(15.23%) 28963(20.41%) 40.41%
S2 318988(62.06%) 7635(55.14%) 58749(48.83%) 25472(15.72%) 29367(20.13%) 40.38%
S3 339986(58.23%) 7298(57.69%) 54004(53.12%) 24795(16.15%) 27950(21.15%) 41.27%
S4 330262(59.94%) 7690(54.75%) 57277(50.40%) 25863(15.49%) 28375(20.83%) 40.28%
S5 328954(60.18%) 7594(55.44%) 56051(51.18%) 26371(15.19%) 29013(20.37%) 40.47%

generation and backward slicing), they perform transformations on
many randomly selected program locations rather quickly, causing
rapid growth of variants (leading to consuming too much time to
analyze all variants). This indicates that our proposed analysis report
guided location selection heuristic plays an essential role in reducing

the number of locations selected for modifications, subsequently
guiding the test generation towards producing more valuable vari-
ants. Compared to Statfier that discovers 79 bugs, the AL*RS
approach that uses random variant selection only finds 68–75 bugs
across the five runs. As we designed the structure diversity driven
variant selection heuristic to avoid evaluating variants that trigger
similar bugs, the fact that Statfier outperforms the AL*RS approach

shows that this heuristic guides Statfier in finding distinct bugs.
Besides, to assess the effectiveness of reducing redundant variants,
we compare the structurally diverse variant selection heuristic with
other baseline approaches. As shown in Table 6, RL*RS and RL*SS
approaches fail to find any defects in static analyzers. Hence, we
only compare the number of generated variants between AL*RS
and AL*SS. We define variant selection percentage below:

𝑉𝑎𝑟𝑖𝑎𝑛𝑡 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑏𝑦 𝐴𝐿∗𝑆𝑆
𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑏𝑦 𝐴𝐿∗𝑅𝑆 %

Based on the above equation, a lower variant selection percentage

denotes a better approach (with greater selection power) that only
needs to evaluate fewer variants (i.e., for all evaluated analyzers,
Statfier can use fewer variants compared to AL*RS to find the
same number of bugs). Table 7 depicts the variant selection per-
centage across the five seeds; each cell is of the form “number of
generated variants(variant selection percentage)”. On average, the
AL*SS heuristic in Statfier selects 40.28%–41.27% variants com-
pared to AL*RS. Based on Table 6 and Table 7, although AL*SS
heuristic evaluates fewer variants, it still finds more unique bugs
thanAL*RS. Hence, we believeAL*SS heuristic is effective in reducing
the number of variants while preserving its bug finding capability.

5.4 RQ3: Effectiveness of Transformations

We further analyze the effectiveness of each supported semantic-
preserving program transformation. Figure 7 shows the number
of bugs found using different types of transformations. Based on
the bug distribution, each transformation can find at least one bug
in the evaluated analyzers. This means all implemented transfor-

mations are effective. Moreover, we observe transformations that
involve extracting a variable (e.g., “Extract local variable” and “Move
assignment”) are more likely to find bugs in the evaluated analyzers.
Comparison with Prior Mutation Testing Technique. Prior
work [2] provides evidence on the correspondence between muta-
tions and static warning types. However, it can not detect bugs in
static analyzers. After comparing the set of transformations used in
prior work, three transformations IOR (Overriddenmethod rename),
AOR (Arithmetic operator replacement), and AOI (Arithmetic oper-
ator insertion) are semantic-preserving and related to Statfier. As

Figure 7: Number of transformation type

stated in section 4.2, we exclude style-related transformations like
changing identifier names because of causing inaccurate differen-
tial analysis results. Hence, we do not consider the transformation
IOR. The remaining AOI and AOR are similar to the transforma-
tion “Equivalent arithmetic expression”. As shown in Figure 7, this
transformation can find nine bugs, which is less than our findings.
Comparison with Prior Compiler Testing Technique. In a
related approach for compiler testing [65], the Hermes tool synthe-
sizes predicates representing known boolean values in control flow
statements by executing input programs to obtain runtime infor-
mation, whereas Statfier does not need to run input programs,
which is also the feature of static analyzers. Besides, the Hermes is
input sensitive as it relies on profiling analysis affected by the input,
whereas our approach only requires static information and is more
general. Additionally, we provide more transformations to make
variants diverse. As stated in the design principle (Section 4.2), we
incorporate the analysis capability of static analyzers by excluding
transformations that are beyond the capability of existing analyzers.
Hence, we adapted the prior compiler testing technique [65] for
testing analyzers by representing it with the “statement wrapping”
transformation, which uses literal boolean values as predicates. Fig-
ure 7 shows “statement wrapping” transformation can only detect
eight bugs, which is less effective than Statfier.

6 THREATS TO VALIDITY

External. Our experiments may not generalize beyond the studied
static analyzers and other programming languages beyond Java.
While there are many other static analyzers available (e.g., Error
Prone [61]), we only test five popular analyzers and construct only
Java programs as inputs to these analyzers, although some of these
analyzers can support multiple languages (e.g., PMD can analyze
JavaScript). Moreover, our results may not generalize beyond the
implemented transformations. To mitigate this threat, we include
transformations that have shown promising results in prior work.
Our experiments show that the implemented transformations are
general enough to discover bugs in the evaluated static analyzers.
During the root cause categorization, two authors of the paper inde-
pendently analyze the bugs by inspecting analysis reports and logs
of running each analyzer and discuss to resolve any disagreement.
Moreover, we confirmed the validity of each identified bug with
developers by filing a total of 79 bug reports.
Internal. Our code and automated scripts may have bugs that can
affect the results. To mitigate this threat, we have made our tool
and data publicly available.
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7 RELATEDWORK.

Program Transformations. Program transformations have been
applied to enhance many software engineering jobs, including pro-
ducing simulated source code plagiarism [11], improving testabil-
ity (i.e., transform a program to make it easier for a given test
generation method to generate test data) [34, 35], enhancing the
generalizability of neural program models [59], and testing refac-
toring engines [23]. In the context of static analyzers, randomized
program transformation has been used for testing static analyz-
ers [19]. Meanwhile, a prior work formalizes the impact of program
transformations on the results of static analysis by a mathematical
framework [52]. Although we derive our set of semantic-preserving
transformations from existing literature [11, 23, 51], our set of trans-
formations is more comprehensive as it can cover program elements
at different levels, and our set of transformations is used for testing
static analyzers rather than for other applications. The most closely
related to Statfier is the recent work that uses program trans-
formations to resolve false positives of static analyzers [70]. Our
approach differs from prior work in three aspects: (1) we generate in-
put programs for testing static analyzers and file analysis reports to
indicate issues in analyzers, whereas prior work improves static ana-
lyzers from the user perspective (no bug reports are filed as a result);
(2) we use different transformations (general semantic-preserving
transformations instead of rewriting tool-specific templates in prior
work [70]); (3) Statfier finds issues in static analyzers, whereas
prior work focuses on resolving FPs.
Static Analysis. Many prior studies focus on evaluating the effec-
tiveness of static analysis [3, 4, 18, 32, 42]. Although our study in
Section 4.1 also evaluates the effectiveness of rule checkers within
static analyzers, none of these prior studies analyze the quality of
existing input programs in the official documentation and test suites.
Our study revealed the potential of using these input programs for
generating variants that can be used for finding bugs in analyz-
ers. To prioritize important warnings, prior techniques proposed
improving the ranking of generated warnings [36, 44, 62]. Unlike
these techniques that aim to enhance the results of static analyzers,
our approach does not modify the ranking of generated warnings.
We only report bugs in analyzers by generating test programs.

Several approaches have been proposed for testing static ana-
lyzers [19, 45, 67, 72]. These approaches have limited applicability
because they either (1) rely on specialized oracles designed for a
specific language or analyzer [1, 9, 19], (2) use a heavyweight an
SMT solver for finding soundness and precision bugs [67], or (3)
rely on programs from open-source projects instead of generating
input programs [72]. Some differential testing approaches [45, 72]
use several different implementations (model checkers [45], static
analyzers [72]) as variants for testing. In contrast, we adopt meta-
morphic testing and use variants generated by transformations.
Our experiments show our test generation approach is practical
(compared to the approach that uses SMT solver) and can find bugs
in many static analyzers. Bug injection approach is also adopted to
test analyzers [10, 37, 50]. SolidiFI [29] evaluates the effectiveness of
smart contract analyzers. It can generate mutants by injecting seven
types of bugs. As injected bugs are well-known, SolidiFI can infer
analysis results via inserted bug types. However, it cannot apply to
general static analyzers because the issue types are determined by

evaluated analyzers, and we cannot speculate whether evaluated
tools can detect this issue without manual analysis. Besides, injected
bugs in SolidiFI are specific to smart contracts. Parveen et al. [54]
propose a mutation approach to evaluating taint analysis tools,
but its mutators are designed for specific IoT applications, e.g., it
mutates string literals in APIs like sendPush. Compared to previous
approaches, our approach targets general-purpose analyzers.
Compiler Testing. Several techniques have been proposed for
compiler testing [12–15, 65, 68, 75, 77], many of them rely on equiv-
alent relation as the metamorphic relation to address lacking oracle
problem [27, 47, 48, 51, 68]. Similarly, we also rely on equivalent re-
lation (i.e., applying semantic-preserving program transformations
to generate variants) to construct the oracle, but our transforma-
tion set is more diverse (e.g., the class-level transformations), which
helps to test analyzers in different AST structures. Moreover, pro-
posed heuristics can reduce locations to be transformed and select
variants that are more likely to represent distinct bugs. Similar to
existing techniques on JVM fuzzing [16, 17], our approach also
generates Java programs. Different from these approaches that use
various JVM implementations for differential testing, we perform
metamorphic testing on static analyzers, and our heuristics find
bugs in static analyzers instead of JVM implementations.

8 CONCLUSION AND FUTUREWORK

We present Statfier, a heuristic-based testing approach that auto-
matically generates input programs via semantic-preserving pro-
gram transformations for discovering bugs in static analyzers. Stat-
fier relies on two key heuristics: analysis report guided location
selection and structure diversity driven variant selection. Our ex-
periments show that Statfier outperforms the evaluated baselines
by finding more bugs yet iterating through fewer variants. Overall,
Statfier has discovered 79 bugs, of which 46 have been confirmed.
Our results suggest that developers of static analyzers can incorpo-
rate our approach into their test suites to further improve the bug
detection capability. In fact, 26 of our generated input programs
have been integrated into the official test suites of the evaluated
static analyzers. While we focus on bugs that lead to differential
analysis results in this paper, it would be worthwhile to study other
bugs in static analyzers in the future (e.g., inconsistencies between
documentation and the behavior of static analyzers [66]). Another
direction is to improve the effectiveness of Statfier by tuning con-
figurations of static analyzers as prior work shows that configurable
software such as program verification tools can be tuned [46].
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