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Abstract—Regression occurs when code changes introduce
failures in previously passing test cases. As software evolves,
regressions may be introduced. Fixing regression errors manually
is time-consuming and error-prone. We propose an approach
of automated repair of software regressions, called relifix, that
considers the regression repair problem as a problem of recon-
ciling problematic changes. Specifically, we derive a set of code
transformations obtained from our manual inspection of 73 real
software regressions; this set of code transformations uses syn-
tactical information from changed statements. Regression repair
is then accomplished via a search over the code transformation
operators – which operator to apply, and where. Our evaluation
compares the repairability of relifix with GenProg on 35 real
regression errors. relifix repairs 23 bugs, while GenProg only
fixes five bugs. We also measure the likelihood of both approaches
in introducing new regressions given a reduced test suite. Our
experimental results shows that our approach is less likely to
introduce new regressions than GenProg.

I. INTRODUCTION

Regression captures the scenario where failures occur in

previously passing tests. As software evolves due to changes

in software requirement and bug fixes, regression bugs may be

introduced. Even worse still, fixing a regression bug is likely

to introduce another regression bug due to low-quality patches

and inadequate testing.

Prior studies on regression errors primarily focus on tech-

niques for localizing and understanding of regressions. The

delta debugging approach searches for failure-inducing cir-

cumstances contributing to test failures (i.e., the set of code

changes and the state differences between passing and failing

tests) using a divide-and-conquer algorithm [55]. Given a

reference program, a buggy program, and an input that fails on

the buggy program, the Darwin approach generates alternative

input that fails on the buggy program, then compare the

executions of the two inputs to pinpoint the root cause of the

error [46]. Previous studies show promising results in locating

the cause of regression errors. However, after locating the

cause of regression errors, how do we utilize the availability

of a previous working version to automatically repair such

errors? This is addressed in the current paper.

Fixing regression errors manually is time-consuming and

error-prone. Recent study stated that some regression errors

could take up to 8.5 years before they are detected and fixed by

developers [29]. Recently, several automated program repair

techniques have been introduced. Arcuri and Yao suggested

adapting evolutionary algorithms for automatic program gen-

eration [26]. Weimer et al. utilized genetic programming for

automated program repair [33], [37]. Wei et al. leverages

software contract to automatically fix faulty Eiffel classes [52].

Nguyen et al. employed symbolic execution and component-

based program synthesis for discovering the code required

for fixing the buggy program [44]. Kim et al. proposed an

automated patch generation approach (i.e., PAR) that utilizes

common fix patterns learned from manual inspection of human

patches [35]. Recent study shows that statements or expres-

sions required for fixing exist in previous commits of the

programs [28], [41]. However, existing automated program

repair techniques have not fully exploited information from the

software change history for automated repair of regressions.

In this paper, we verify the possibility of using syntactical

information between program versions and test execution

history to repair problematic changes that causes regressions.

The key challenge in repairing regression errors is to retain

as much of the new functionalities introduced along with the

new version as possible while reproducing the regression tests’

behavior in the previous version.

Criteria 1: We want our automated repair of regression error

to follow the following criteria:

C1: Introduces small changes Retains as much of the code

of the new version as possible as more changes may lead to

more regression errors.

C2: Produces readable code Generates source code that de-

velopers can understand and verify easily.

C3: Passes progression tests Progression tests that pass in

the new version and fail in the previous version must remain

passing after the repair.

C4: Passes previously failed regression tests Regression

tests that fails in the previous version and pass in the current

version must be made passing in the new version.

C5: Only change if no regression will be introduced If

changes caused other tests in the test suite to fail, then leave

the source code unchanged. The repaired version should not

introduce further regression error.

We present a novel approach, called relifix, for automated

repair of software regressions. In particular, our contributions

can be summarized as follows:

New Domain: We focus on program fixing on a new domain,

specifically on repairing software regression errors. This

domain was not studied in prior work in automated program

repair, but various researches on fault localization [27], [46],

[54], [55] and regression testing [49], [50] showed that this

domain is important and widely represented in software

development activities.

New Perspective: We formulate the software regression re-

pair problem as a problem of reconciling problematic
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changes. We hypothesize that the fixes for regression bugs

can be crafted using code from both the previous version

(specifically, the preceeding version before the regression

error occurs) and the current program version. We justify this

formulation further in section II. This formulation allows us

to introduce fixes only to the changed lines.

Program Repair using previous version : Our approach

leverages different program versions and code changes for

guiding automated repair of regression bugs.

New contextual operators: We manually inspected 73 real

regression bugs from the CoREBench benchmarks [29]. Our

manual inspection produces a set of operators that uses

information from two program versions, including changed

statements and program location of the changed statements.

Evaluation: We applied relifix on seven open-source C

projects (Make, Find, Vim, Tar, Indent, Python and

Perl), which have well-developed and well-tested code. We

compare the repairability of relifix with GenProg on 35 real

regression errors. relifix successfully repaired 23 bugs, while

GenProg only fixes five bugs. To compare the likelihood

of both approaches in introducing new regressions, we also

evaluated the regression rate of both approaches given the

reduced test suite (test suite that contains the tests with

different test behaviors in the two program versions). Our

experimental results show that our approach is less likely to

introduce new regressions compared to GenProg.

II. REPAIRING REGRESSION AS RECONCILING

PROBLEMATIC CHANGES

When a developer fixes a regression error, he or she needs

to execute the failing regression test, locate the cause of the

test failure, and fix the current version of the program by

referring to the previous version. This suggests that while

repairing regression we probably try to find a fix that replicates

the regression tests’ behavior in the previous version. In fact,

trivial fixes exist in the context of regression – execute the

previous version for the failing regression test and run the

current version for the remaining test cases. Such fixes are

quick to issue and they pass all tests in the test suite. However,

they are costly to maintain and difficult to understand. Worse

still, the number of program versions will double when another

regression bug emerges. Thus, a good repair must be able

to reproduce the regression tests’s behavior in the previous

working version while maintaining the working functionalities

for the current version.

There are generally three types of software regressions.

Local A code modification breaks existing functionality in the

changed program element.

Unmask A code modification unmasks an existing bug that

had no effect to some test’s behavior before the modification.

Remote A code modification introduces a bug in another

unchanged program element.

Intuitively, if a functionality works in the previous version,

the Local regression error can be fixed by rolling back to

its old implementation in previous version. This intuition is

supported by the Revert to previous statement operator derived

from the Corebench benchmarks. Our hypothesis that fixes

for regression errors exist in the immediate version before a

regression error occurs, is in line with this intuition. Recent

studies that speculate on the probabilities of locating fixes

from multiple program versions [28], [41] further validates

this hypothesis.

In contrast, if some source code in previous version had

successfully hidden an existing bug, the Unmask regression

error may be fixed by re-masking the problematic changes. In

this case, fixing regression involves searching for a condition

under which the problematic code modifications have no effect

to the tests’ behavior. This intuition is supported by the Add

condition operator derived from the Corebench benchmarks.

We hypothesize that the condition for hiding the problematic

changes can be found among the program expressions in

the current version. Some of the existing automated program

repair techniques [35], [37] share similar hypothesis.

From these two observations, we formulate the software

regression repair problem as a problem of reconciling prob-

lematic changes.

III. EXPERIENCE ABOUT REAL-LIFE REGRESSIONS

We manually examined 73 benchmarks obtained from four

subject programs to understand how software evolves dur-

ing real-world regressions. We used the CoREBench bench-

marks1 for our manual investigation. This set of benchmarks

is derived from regression errors that were systematically

1http://www.comp.nus.edu.sg/∼release/corebench/



deduced from version control repositories and bug reports

of four open source GNU projects (i.e., Make2, Grep3,

Findutils4,Coreutils5).

For each of the 73 benchmarks, we examined two set of

code changes: (1) changes that occur between the version

before the regression is introduced (i.e., version P1) and the

version immediately after P1 (i.e., version P2); and (2) code

changes that occur between the version before the regression

is fixed (i.e., version P3) and the version after the regression

is fixed (i.e., version P4). We refer to each program version

as P1, P2, P3 and P4 to denote the corresponding program

version for the rest of the paper. We then derived a set of

general code transformations by comparing version P3 with

P4. This set of code transformations form the operators that

can be applied to repair the regression bugs. Table I shows

the code transformation derived from the benchmarks, together

with the number of benchmarks that uses the corresponding

operator in regression bug fixing. The table is sorted with the

most commonly used operators at the top of the table. The last

row in the table shows that 43 repairs that involves two code

transformation operators (the other 73-43 = 30 repairs involve

only one code transformation operator). Overall, our manual

inspection shows that information given by code changes be-

tween program versions are often included in human patches.

A. Contextual Operators that use information from different

program versions

Our manual inspection produces a set of operators that

utilize information obtained from the previous version and

from the code changes that occur between two consecutive

program versions. We refer to this set of operators as contex-

tual operators due to their references to different versions. We

next provide examples of our contextual operators. Example

code with a leading “ ” denotes the statement removed from

P4, while code with leading “ ” marks the statement added

from P3 to P4. Code without any leading symbol denotes the

unchanged statement.

Below are the details of each contextual operator:

Use changed expression as input for other operator This

operator uses the program expressions that change

(i.e., modify, add or remove) between two versions

as input to other non-contextual operators (e.g., Add

condition). The example below shows a patch in

regression bug-fixing for Coreutils. The expression

max range endpoint < eol range start was

removed in the evolution from version P1 to version P2.
if (output_delimiter_specified && !complement &&

eol_range_start && max_range_endpoint

&& !is_printable_field(eol_range_start))

(max_range_endpoint < eol_range_start

|| !is_printable_field(eol_range_start)))

Listing 1. Example for use changed expression as input for other operator

2http://www.gnu.org/software/make/
3http://www.gnu.org/software/grep/
4http://www.gnu.org/software/findutils/
5http://www.gnu.org/software/coreutils/

Revert to previous statement This operator replaces newly

added statements with the corresponding statements from old

version, essentially reverting back some statements to the old

version. The example in the following show a loop that was

removed when Make evolves from version P1 to version P2.

The developer added back the same loop to fix the regression

in version P4.
while(out > line && isblank((unsigned char)out[-1]))

--out;

Listing 2. Revert to previous statement example

Remove incorrectly added statement This operator deletes

program statements that were incorrectly added by the de-

veloper due to wrong bug fix.

Swap changed statement with neighbouring statement This

operator exchanges a changed statement with another

consecutive statement. The changed statement serves as

the pivot position for the exchange. Listing 3 shows the

code modifications from version P3 to version P4. The

FindUtils developer added the statment

our pred->est success rate = estimate -

pattern match rate(...); in version P2, and

later changed the statement order relative to the

statement(*arg ptr)++;.

(*arg_ptr)++;

our_pred->est_success_rate =

estimate_pattern_match_rate(argv[*arg_ptr], 1);

(*arg_ptr)++;

Listing 3. Example for Swap changed statement with neighbouring
statement

Negate added condition This operator negates a branch

condition that was previously added by the developer.

For example, the Grep developer added the condition

included patterns && !excluded file name(...)

in version P2. The bug is fixed by changing

the added condition to included patterns &&

excluded file name(...) in version P4.

Convert statement to condition variable statement This oper-

ator convert a statement with Boolean return type to a

condition variable statement. Listing 4 presents the changes

between version P3 and P4. The Coreutils developer forget

to check for the condition when the set statement returns 0.

The fix requires converting the set statement to a condition

variable statement.
set_acl(dst_name, dest_desc, 0666 &˜cached_umask());

if(set_acl(dst_name, dest_desc, 0666 & ˜cached_umask

()) != 0)

Listing 4. Code changes between version P3 and P4 to illustrate convert
statement to condition variable statement

IV. EXAMPLE

We illustrates how relifix can be used by showing three

examples of fixes generated by relifix in three projects. The

first two examples illustrate various operators involved in the

fixes while the last example compares our generated fixes

with the patches issued by developers. Consider first the Vim



Operator Operator Type Implemented Count
Add condition Non-contextual X 27
Add statement Non-contextual X 21
Use changed expression as input for other operator Contextual X 13
Revert to previous statement Contextual X 11
Replace with new expression Non-contextual 13
Remove incorrectly added statement Contextual X 9
Change type Non-contextual 5
Add method Non-contextual 5
Add parameter Non-contextual 4
Add local variable Non-contextual 3
Swap changed statement with neighbouring statement Contextual X 2
Negate added condition Contextual X 1
Convert statement to condition variable statement Contextual X 1
Add field Non-contextual 1
Total 6 Contextuals 8 116
Total cases requiring 2 operators 43

TABLE I
THIS TABLE SUMMARIZES THE NUMBER OF CODE TRANSFORMATION OPERATORS THAT ARE USED FOR FIXING REGRESSION BUGS.

project 6, a popular editor that supports efficient text editing.

A regression is introduced in version 7.2.50 of Vim, causing

failures in two tests in Vim’s existing test suite. Listing 5

shows the repair generated by relifix with an application

of the Revert to previous statement operator. This example

demonstrates how relifix repairs a Local regression error. Note

that there are approximately 18 change hunks7 in the faulty

source files between the two program versions, while the

produced repair only modifies one hunk. Instead of reverting

the entire source files to the previous version, the produced

repair only reverts the faulty lines. This shows that our repair

satisfies the criterion C1.
fwrite(p, l, (size_t)1, fd);

fwv &= fwrite(p, l, (size_t)1, fd);

Listing 5. Example patch generated by relifix using the “Revert to
previous statement” operator

Consider next the GNU Indent project 8, a utility that

formats C source files according to specific indent style. An

Unmask regression occurs in version 2.2.10 of Indent, causing

the buggy version to append too many newlines between

variable declarations of a C source files. Listing 6 shows the

repair generated by relifix using the “Add inverted condition”

operator and “Use changed expression as input for other”

operator. relifix first generates the condition !(parser -

state tos->decl on line) by negating an existing

Boolean expression. This intermediate patch passes the re-

duced test suite that contains one failing test, but it introduces

new regression in other tests from the whole test suite. relifix

then repairs the regression that it introduced by modifying the

changed lines (i.e., the added condition). The final patch that

passes all tests in the entire test suite is formed by appending

another condition parser state tos->procname !=

"\0" (i.e., condition obtained by converting the assignment

statement parser state tos->procname = "\0" to

6http://www.vim.org/
7A change hunk is a single sequence of contiguous source codes which has

been modified from one version to another [39], [43], [45].
8http://www.gnu.org/software/indent/

disequality) to the intermediate patch. This example illustrates

the two-phase patch evaluation performed by relifix.

We next discuss one example that illustrates the differences

between the patch generated by our approach and the patches

issued by the developer. For this example, consider the GNU

Make project9, a tool that builds executables for a program

from its source files. Two regression bugs (i.e., bug #12202

and bug #12267) are introduced with version 73e7767 of

Make. Listing 7 shows the two patches generated in two

different commits by the Make developer to fix the bugs.

Listing 8 presents the code changes that causes the regression,

while listing 9 shows the single patch generated by relifix that

repairs both regression errors. To fix both regression bugs,

relifix appends the condition isintermed ok to one of the

code change hunks. In this case, we consider that the code

changes in listing 8 unmask an latent regression error and the

added condition isintermed ok has successfully masked

both regression errors. While the fix generated by relifix is

significantly different from the developer’s patches, it may be

preferable because (1) it satisfies all criteria in Criteria 1 ,

and (2) it fixes both regression errors using only one patch.

V. ALGORITHM

Figure 1 shows the overall work-flow of our approach. Our

relifix approach follows a three-step process. The first step

takes as input the source code of the two program versions

and the whole test suite with at least one failing test case that

captures the regression error, and generates a ranked list of

suspicious statements. The second step modifies the source

code for the buggy version at the program location according

to the list generated at previous step to produce a candidate

repair. The last step builds the modified source code and re-

execute the test suite to check if the generated repair passes

all test cases. The main novelty in our work is in coming up

with the contextual operators, and then applying them at the

“right” places.

9http://www.gnu.org/software/make/



// Patch that repairs the reduced test suite

if (/* added */(!(parser_state_tos->decl_on_line)){

...

}

// Patch that repairs all tests in the test suite

if (/* added */(!(parser_state_tos->decl_on_line)

|| parser_state_tos->procname != "\0")}){

Listing 6. Example patches generated by relifix using two operators

// Developer fixes for regression bug #12202

f->is_target = 1;

. . .
file->is_target = 1;

// Developer fixes for regression bug #12267

register struct file *f = enter_file (imf->name);

register struct file *f = lookup_file (imf->name);

if (f != 0)

f->precious = 1;

else

f = enter_file (imf->name);

. . .
if (!f->precious)

Listing 7. Example patches issued by the developer

//In file.c

f2->is_target = 1;

// In implicit.c

struct file *f;

...

if (lookup_file (p) != 0

if (((f = lookup_file (p)) != 0 && f->is_target)

Listing 8. Example code change hunks between version 73e7767 and its
preceeding versions

// Patches generated by relifix

if (((f = lookup_file (p)) != 0 && f->is_target)

if (((f = lookup_file (p)) != 0 && (f->is_target ||

isintermed_ok))

Listing 9. Example patch generated by relifix using one operator

A. Fault Localization

Our goal is to find a faulty program location that leads to

the regression error. We first compute a suspiciousness score

for each statement in the buggy program using the Ochiai

formula [23] given below:

suspiciousness(s) =
failed(s)10

√

total failed13 × (failed(s) + passed(s)14)

We choose the Ochiai formula due to its effectiveness

demonstrated by previous studies [21], [22]. To obtain the code

changes between the two versions, we use the open-source

GNU Diffutils 19. Diffutils perform plain text comparisons

to find the differences between two text files. After sorting

the suspiciousness score for each statement, we remove the

statements that do not lie within the set of modified statements

from the list of suspicious statements. This step allows us to

(1) reduce the inspection cost for the location to apply the

fix and (2) increase the probability of applying our contextual

operators. We share assumptions that are commonly used to

evaluate testing and debugging techniques [32], that the error

is among the changed statements. Note that this may lead to

loss of residual latent error that are not manifested by the

current test suite.

B. Mutant Generation and evaluation

1) Algorithm: After relifix generates the list of suspicious

statement, it uses our mutation generation component to gen-

erate a mutant. Our definition of program mutant is similar to

18failed(s): Number of failing tests that executes statement s
18total failed: Total number of failing tests
18passed(s): Number of passing tests that executes statement s
19http://www.gnu.org/software/diffutils/

prior work on mutation testing [31]: each mutant is defined

as a program that are modified through some applications of

mutation operators at some faulty locations.

We collect a set of program expressions of type Boolean

to be combined with all the parameterizable operators at later

step. This set contains (1) all Boolean program expressions

(that are within the program scope at the faulty location), and

(2) expressions formed by converting the assignment operators

in all the assignment statements (that are within the program

scope at the faulty location) to the equality operators.

Algorithm 1 shows the pseudo-code of the relifix mutant

generation and evaluation algorithm. Our relifix approach

applies a randomly chosen contextual operator at a faulty

location, evaluates each mutant against the current test suite,

and iteratively repeats these steps until all the tests pass, no

contextual operators apply, or the time limit is reached. Before

applying each operator, we check whether the statement at the

faulty location matches the given context for the operator and

gather the required contextual information from both program

versions. For example, if the faulty location has integer return

type, the Convert statement to conditional statement operator

cannot be applied.

We implement two optimizations for our random search

algorithm: (1 – highlighted in red) we store the index for

the program expressions that do not compile in a tabu list,

which helps us to avoid reusing program expressions that are

not compilable. (2 – highlighted in blue) we enumerate the

number of well-formed mutants (Definition 1). As each well-

formed mutant indicates progress in generating the final repair,

the operator involved in generating that mutant can be reused

in generating the next set of mutants.



Input: List of suspicious statements RankList
Input: Set of test suite T , Reduced test suite Tr ⊆ T
Input: List of contextual operators O
Input: Set of program expression E
Input: Period P – the number of iterations for each location

before considering next location
Output: Program mutant that passes all test cases
iter ← 0; currO ← Shuffle(O); currTS ← Tr;
Tabu← {}; currL← 0; currC ← original program;
while repair not found do

currL← next top ranked location ∈ RankList;
changedCount← 0;
while iter ≤ P ∧ changedCount < size(CurrO)− 1
do

op← Dequeue(CurrO);
if op is parameterizable then

/* select expression that are not in tabu */
repeat

currE ← randomly chosen expr ∈ E;
until currE 6∈ Tabu;

/* apply operator op with currE as parameter to
candidate currC at location currL */
c← currC.apply(op, currL, currE);

else
/* apply operator op to candidate currC at
location currL */
c← currC.apply(op, currL);

end
Result← Evaluate(c, currTS);
/* two-phrase mutant evaluation */
if ∀r ∈ Result, r = passes then

currTS ← T ;
AResult← Evaluate(c, currTS);
//check if repair is found
if ∀a ∈ AResult, a = passes then

break;
else

/* c causes new regressions, repair c with the
whole test suite */
currC ← c;
/* reset and re-shuffle O */
currO ←Shuffle(O);

end
else

/* check if the operator op can be applied at
location currL and if candidate c is compilable */
if canBeApplied(op, currL) ∧ isCompiled(c)
then

/* reuse operator used in candidate c if it
induces any change in the test execution
results for any test in the test suite */
if op is parameterizable ∧ ∃r ∈
Result,diffResult(r) then

Enqueue(CurrO, op);
end

changedCount← changedCount+ 1;
iter ← iter + 1;

else
Tabu← Tabu ∪ currE;

end
end

end
end

Algorithm 1: relifix Mutant Generation and Evaluation Algorithm

Definition 1: Well-formed mutants are mutants that satisfy

the following conditions:

Compilable Mutants generated should not generate any com-

pilation errors

Match Given Context The program location and the struc-

tural type of the program element must match the context for

the chosen operator used in generating the repair.

Induce Change in Test Execution Results Mutants gener-

ated should induce changes that affect the test behavior of

some tests within the test suite.

2) Implementation: We modify the clang-mutate tool 20 to

implement our mutant generation component. clang-mutate

is built on top of the Clang 21 LibTooling library that offers

utilities for parsing C programs and performing source-to-

source transformations. Our mutant generation component

satisfies the criterion C2 as it modifies C source files directly to

produce understandable code annotated with code comments

(see Section IV for examples of our generated code).

We implement all the contextual operators listed in sec-

tion III-A, including five non-parameterizable operators: (1)

Revert to previous statement, (2) Remove incorrectly added

statement, (3) Swap changed statement with neighbouring

statement, (4) Negate added condition , and (5) Convert

statement to condition variable statement. We also implement

four parameterizable operators (i.e, operators that needs to

be with program expression), including (1) Add condition

to changed expression (this operator combines the operator

Use changed expression as input for other operator and the

operator Add condition), (2) Add condition , and (3) Add

statement. The first four parameterizable operators aim to find

the condition for hiding an Unmask regression error.

Before applying contextual operators, we collect contextual

information (program location, changed expression and type

of changes) required to support the defined operations.

C. Test case Prioritization and Reduced Test Suite

We evaluates each generated patch using a two-phase ap-

proach. We first execute the resulting patch against the reduced

test suite. The reduced test suite (Figure 1) consists of tests

with different execution results in both versions, namely the

progression tests (i.e., tests that fail in the previous version

but pass in current version) and the failing regression tests

(i.e., tests that fail in the previous version but pass in current

version). When a patch that passes both set of tests is found,

we then check if the patch introduces any new regression by

re-executes all tests in the test suite.

We prioritize test cases using the reduced test suite based

on the assumption that test cases that evolve across the two

versions are more likely to fail in future execution [50]. Our

goal is to save the time spent in evaluating each patch against

the entire test suite, and to allow more candidate mutants to

be generated within the time limit.

20https://github.com/eschulte/clang-mutate
21http://clang.llvm.org/



Subject Description Size in kLOC Bug Introducing Commit Bug Report PT Size/Test Suite Size

Vim Text Editor 150 f80e67 [18] [17] 1/74

509890 [16] [15] 2/73

a3552c [20] [19] 1/71

220906 [14] [13] 1/72

CPython Programming language 407 b878df [4] [3] 1/268

5b0fda [2] [1] 1/286

Perl Programming language 271 dca606 [10] [9] 1/159

bb9ee97 [8] [7] 1/159

Indent Source code re-format utilities 15 2.2.10 [6] [5] 1/159

Tar Archives manipulation utilities 21 1.14 [12] [11] 1/15

Findutils Directory searching utilities 18 6 versions 10 bugs [1,10]/1054

Make Program executable generation utilities 35.3 12 versions 15 bugs [1,2]/528

TABLE II
SUBJECT PROGRAMS AND THEIR BASIC STATISTICS

Subject Operators Used Number of Operators Change Hunks

Vim-f80e67 [18] Swap 1 1

Vim-509890 [16] Revert 1 1

Vim-a3552c [20] AddIf 1 1

Vim-220906 [14] - - -

Cpython-b878df [4] Revert 1 1

Cpython-5b0fda [2] AddIf 1 1

Perl-dca606 [10] Revert 1 3

Perl-bb9ee97 [8] - - -

Indent-2.2.10 [6] AddIf & AddOld 2 1

Tar-1.14 [12] Revert 1 2

Findutils 4 AddIf, 3 Revert, 1 Insert 8/8 10/8

Make 3 AddIf, 3 AddNegated, 1 Revert 7/7 7/7

Total/Mean 10 AddIf, 8 Revert, 3 AddNegated, 1 AddOld, 1 Swap, 1 Insert 24/23=1.04 28/23=1.22

TABLE III
OPERATORS USED IN FIXES GENERATED BY relifix FOR THE SUBJECT PROGRAMS

VI. EXPERIMENTAL EVALUATION

We perform an evaluation on real regressions by comparing

the effectiveness of our approach with GenProg [37]. To

evaluate the effectiveness of our approach, we aim to address

the following research questions:

RQ1 How many regression errors can our approach repair

compared to GenProg?

RQ2 Given only the test cases that evolves across the two

versions, how likely is our approach to introduce new regres-

sions, as compared to GenProg?

RQ3 Are our produced fixes suitable for patching latent

regression errors or for patching errors due to code changes?

RQ4 Can we fix regression errors by making only small code

changes without introducing new regressions?

The first question (RQ1) assesses the repairability of both

approaches in the context of regression error, given the whole

test suite. The second question (RQ2) evaluates the likelihood

of both approaches in producing other test failures after

repairing a regression error based on a reduced test suite (see

Subsection V-C for definition of reduced test suite). The third

question (RQ3) asks if our approach is more effective in fixing

existing errors (i.e., latent errors) compared to new errors that

are introduced due to the code modification. Lastly, the fourth

question (RQ4) validates our hypothesis that mutant with small

code changes (according to our below definition of small code

changes) are less likely to introduce new regressions.

At the beginning of the paper, we presented Criteria 1 which

guides our regression repair. We now present Criteria 2 which

checks whether our approach produces repairs with small

code changes, and further clarifies the first property mentioned

in Criteria 1.

Criteria 2: Our repair should introduce small code changes,

such that each repair should satisfy the following criteria:

Least number of change hunks Our repair should introduce

the least number of change hunks. A change hunk is a

single sequence of contiguous source codes which has been

modified from one version to another [39], [43], [45].

Least number of applied operators Our repair should ap-

ply the least number of operators to the original program.

A. Experimental Setup

We evaluate relifix on 35 real regression errors collected

from seven open-source C projects. Table II lists information

about these projects. The last column in Table II shows the

number of progression tests(PT) and the total number of tests

in the whole test suite. For each regression error, we run both

relifix and GenProg [36] to generate repair. GenProg provides

several options that control the fault localization scheme used

(e.g., path-based and line-based). We use the line-based fault

localization scheme and provide the changed lines for the

faulty locations to simulate a specialized version of GenProg

for fixing regression errors (we call this rGenProg). We then

compare the repairability (RQ1) of all the three approaches:

relifix, GenProg and rGenProg. We also compares how likely

each approach introduces new regressions.

All subject programs in Table II are utilities or libraries that

are commonly used. As we perform our evaluation only on real

regression errors, we select two subjects (i.e., Findutils



Subject relifix relifix GenProg GenProg rGenProg rGenProg

Reduced test suite
Whole test suite

Reduced test suite
Whole test suite

Reduced test suite
Whole test suite

RP RR RP RR RP RR

Vim-f80e67 [18] 1 0 1 0 0 0 0 0 0

Vim-509890 [16] 1 0 1 0 0 0 0 0 0

Vim-a3552c [20] 1 0 1 0 0 0 0 0 0

Vim-220906 [14] 0 0 0 0 0 0 0 0 0

Cpython-b878df [4] 1 0 1 0 0 0 0 0 0

Cpython-5b0fda [2] 1 0 1 0 0 0 0 0 0

Perl-dca606 [10] 1 0 1 0 0 0 0 0 0

Perl-bb9ee97 [8] 0 0 0 0 0 0 0 0 0

Indent-2.2.10 [6] 1 1 1 0 0 0 0 0 0

Tar-1.14 [12] 1 0 1 0 0 0 0 0 0

Findutils 8/10 0/8 8/10 2/10 2/2 5/10 0 0 5/10

Make 8/15 1/8 7/15 0/15 0/15 0/15 0/15 0/15 0/15

Total 24/35 2/24 23/35 2/35 2/2 5/35 0/35 0/35 5/35

TABLE IV
OVERALL REPAIRABILITY (I.E., RP) AND REGRESSION RATE (I.E. RR) FOR relifix AND GENPROG ON THE NEW SUBJECT PROGRAMS

and Make) from the CoREBench benchmarks [29], (2) two

subjects (i.e., Indent and Tar) from [54] and one subject

used in GenProg experiments. We also add two additional sub-

jects (i.e., Vim and Perl). We choose these regression errors

because (S1) they contain detailed bug report that specifies

the bug introducing commit, and (S2) all the regression errors

are reproducable with at least one test that passes in previous

version and fails in the faulty version. We exclude 8 bugs (i.e,

5 bugs from Findutils and 3 bugs from Make) from the

CoReBench benchmarks as they violate (S2).

For running GenProg, we reuse the same parameters stated

in [36]. One significant difference is that we switch to the

deterministic adaptive search algorithm (AE) [53] to control

potential randomness. Each run of relifix, GenProg and rGen-

Prog is terminated after one hour or when a repair is found.

All experiments were performed on a machine with a dual-

core Intel i5-2520M 2.50GHz processor and 4GB of memory.

B. Repairability (RQ1)

Table IV presents the repairability and the regression

rate for the 10 individual regression errors (subjects outside

CoREbench). For all tables, we denote x bugs out of a total of

y bugs with x/y. The last row of Table IV shows the aggregated

repairability (i.e., repairability for all bugs) and the aggregated

regression rate for relifix and GenProg on the two CoReBench

subjects. Given the entire test suite, relifix successfully repair

15 out of 25 regression errors (as stated in the “Whole test

suite” column in Table IV) for the two CoReBench subjects,

while GenProg only fixes 5 bugs. For the 10 regression errors

in subjects outside CoRebench in Table IV, relifix fixes 8

out of 10 regression errors but GenProg fails to generate any

repair for all the 10 bugs. Although GenProg is able to fix

approximately half of the evaluated programs in their recent

study in [36], GenProg can only fix 14.3% (i.e., 5 out of

35 bugs) of all the evaluated subjects. In comparison, relifix

repairs 65.7% (i.e., 23 out of 35 bugs). We attribute the low

repairability of GenProg to (1) the high complexity of the real

regression errors as some regression errors in CoReBench has

fairly high error complexity [29], (2) the lack of availability of

fixes within the same program (i.e., the fixes may only exist

in the previous version of the same program as argued in the

recent paper [28]).

Next, we compare the repairability of both relifix and

GenProg for the reduced test suites (read Subsection V-C

for definition of reduced test suite). Given the reduced test

suite, GenProg generates only 2 out of 35 repairs, whereas

relifix produces 24 out of 35 repairs. In comparison, rGenProg

that fixes only the changed lines fails to produce any repair

with both set of test suites. The repairability of GenProg

decreases (i.e., from generating 5 repairs to generating only 2

repairs) when provided with the reduced test suite compared

to the whole test suite because the search space for the faulty

locations increases significantly due the reduced test suite.

relifix does not suffer from the same problem as (1) it reduces

the search space for the faulty location by ignoring program

location that are not within the set of code modifications, and

(2) it further refines the fix location by applying fixes to each

faulty location iteratively for a limited period of time.

On average, GenProg requires 44 patch evaluations (i.e.,

patch trials in [47]) before generating a repair while relifix

takes 25 mutant evaluations for producing the final repair.
☛

✡

✟

✠

relifix repairs 65.7% of all investigated bugs, while

GenProg only fixes 14.3% of all evaluated bugs.

C. Regression Rate (RQ2)

The “RR” columns in Table IV represent the regression rate

of each approach using only the reduced test suite, while the

“RP” columns denotes the measurement given the whole test

suite. We define regression rate as the likelihood of introducing

new regression errors after fixing all tests in the reduced test

suite. We calculate the regression using the formula below:

RR = Number of Repairs that introduce new regression
Number of All Generated Repairs

(1)



In total, relifix introduces new regressions in 2 out of 24

repairs with the reduced test suite (see Subsection V-C for

explanation of reduced test suite). In comparison, GenProg

introduces regression in all repairs (i.e., 2 out of 2) generated

with the reduced test suite, while rGenProg does not generate

any repair with the reduced test suite.
We next discuss the regressions introduced by both ap-

proaches. relifix causes a regression in a test that check if

parallel execution of Make works correctly when fixing the

regression error for Make-bug-#3920322. This regression

cannot be fixed when executing relifix on the entire test suite.

relifix also introduces new regression when fixing the Indent

program [5]. As discussed in section IV, this regression can

be repaired given the entire test suite. GenProg causes 45 test

failures out of 80 tests in the entire test suite when fixing

the regression error for the Findutils-bug-#1822223,

while it makes 1 out of 81 tests fails in the whole test

suite when repairing the Findutils-bug-#1960524. We

classify the fixes for Findutils-bug-#18222 as a bad

fix because it causes more failures compared to the original

buggy versions that has only one test failure. We think that

the high regression rate of GenProg may be due to (1) the

imprecise fault localization used, and (2) the massive number

of modifications in the patches. The speculation regarding the

problem with fault localization is supported by the fact that

rGenProg , which fixes only the changed lines, does not share

similar regression rate as the original GenProg.
☛

✡

✟

✠

Given the reduced test suite, relifix is less likely to

introduce new regression errors compared to GenProg.

D. Repairability of latent error versus new errors (RQ3) and

the simplicity of the generated repair (RQ4)

Table III lists the operators involved in the fixes generated

by relifix. The table belows explains the abbreviation

used to denote the name of the operator in Table III.
Revert Revert to previous statement

Swap Swap changed statement with neighbouring statement

AddIf Add condition

AddOld Add condition to changed expression

AddNegated Add negated condition

Insert Add statement

As the classification of a regression error as a latent error

or a new error caused by code modifications requires deep

understanding of the regression error, we cannot provide a

precise answer for RQ3. However, since the Revert to previous

statement operator are directly related to the Local regression

error that are caused by a broken existing functionality, we can

provide an rough estimate of latent errors repaired by relifix

by calculating the number of fixes generated using the Revert

to previous statement operators. Based on this estimation, 8

out of 24 generated fixes are latent errors. This suggest that

relifix can fix both types of errors (i.e., latent errors and new

errors due to code modification) equally well.

22http://savannah.gnu.org/bugs/?39203
23http://savannah.gnu.org/bugs/?18222
24http://savannah.gnu.org/bugs/?19605

☛

✡

✟

✠

relifix can fix both latent errors and new errors due to

new code modifications.

We hypothesize that repair that makes only small code

changes are less likely to introduce new regressions. Hence,

we check if our repair satisfies all criteria in Criteria 2. The last

two columns in Table III shows the number of operators used

and the number of change hunks involved for each generated

repair. As shown in the last row of the table, the mean value

for the number of operator used in the final repair is 24/23 ≈
1.04, while the mean value for the number of change hunks

involved in the generated fixes is 28/23 ≈ 1.22. The two low

mean values suggest that most fixes generated by relifix involve

making only small code changes to the original program.

While we do not have enough data to support the claim

that the small code changes are less likely to introduce new

regressions, we observe that all the new regressions produced

by relifix and GenProg with the reduced test suite involve

introducing more than one change hunks and applying more

than one mutation operators in the generated fixes.
☛

✡

✟

✠

relifix generates repairs with small code modifications

to avoid introducing new regressions.

VII. THREATS TO VALIDITY

We identify the following threats to the validity of our

experiments:

Subjects While our evaluation uses subjects of various sizes

and from various sources, we reuses two subjects, in which

we obtained the set of contextual operators, for evaluation.

This selection compensates for the lack of benchmarks with

real regression errors but it may be biased towards relifix

due the operators derived in our manual inspection. However,

we note that the operators used in generating repair by

relifix in those subjects are generally different from the

original operators observed due to the gap between the error

introducing commit and the bugfixing commit.

Contextual Operators We derived the set of contextual op-

erators from a benchmark that contains only C programs.

The same set of operators may not be generalized to other

languages. As we investigated only open-source projects, the

operator may not be generalized to closed-source projects.

Readability of Patches We claim that the code generated by

relifix are understandable with some examples in Section IV.

This claim relies on the intuition that source code annotated

with comments are generally more readable than CIL (i.e.,

Common Intermediate Language) file produced by other

tools (e.g., GenProg). We leave detailed evaluation of the

readability of automatically generated patches as future work.

Time We restrict the time limit for evaluating relifix and

GenProg to one hour due to limited resources available. The

number of generated repair may increase for both tools given

a longer timeout.

VIII. RELATED WORK

Fault Localization There are several fault localization tech-

niques that utilizes multiple program versions [25], [27], [46],



[48], [54], [55]. DARWIN uses the previous version to local-

ize the regression bug using dynamic symbolic execution in

both program versions [46]. Delta debugging isolates failure-

inducing circumstances that are responsible to test failures

using a divide-and-conqueer algorithm [55]. It can be used to

repair regression errors by first isolating problematic changes

and reverting these changes. This way of repairing regressions

is part of our set of contextual operators.

Automatic Program Repair A few automated program re-

pair techniques have been proposed to reduce the time and

effort required to fix software bugs. Arcuri and Yao proposed

adopting evolutionary algorithms for automatic program gener-

ation [26]. Weimer et al. proposed using genetic programming

for automated program repair [37], [33]. GenProg generates

fixes using statements that exist within the same program,

while we utilize statements in the previous program version

to repair regression errors. After generating a repair, GenProg

requires a separate minization step to produce patches with

simpler code changes. Our repair algorithm does not require

this step as it generates repairs by applying only a small

number of operators to some changed lines.

Kim et al. proposed a automated patch generation that

utilizes common fix templates learned from manual inspection

of human patches [35]. Their user study demonstrated that

patches generated by PAR are more acceptable than patches

produced by GenProg. While we also derive our contextual

operators from human patches, our operators are more general

as they are not designed to fix a particular defect class (i.e.,

null pointer exceptions and array out of bounds errors) [42].

Wei et al. leverages software contract to automatically repair

faulty Eiffel classes [52]. Our approach does not require

manually written program contract as it utilizes syntactical

information from the previous program version that may serve

as an implicit specification.

Nguyen et al. employs program synthesis for discover-

ing the intent pieces of code required for fixing the buggy

program [44]. While we employed random search for the

condition to hide the Unmask regression errors due to

scalability issues, we believe that program synthesis may be

used to generate the required condition.

Repair that uses domain specific knowledge There are

several program repair techniques that utilizes domain

specific information. In particular, PACHIKA relies on

differences between passing and failing runs to automatically

infer object behavioral model from Java program and produce

fixes by either inserting or deleting method calls [30].

BugFix is a tool that incorporates information gathered from

several debugging sessions in order to increase precision

for producing bug-fix suggestion [34]. R2Fix closes the

loop between bug report submission and patch generation

by automatically classify the type of bug discussed in bug

report and extracting pattern parameters to generate fixes

based on a several predefined fix patterns [38]. PHPRepair

fixes malformed HTML generation errors by encoding the

string output for each test case execution as a constraint

over variables corresponding to constant prints in the

program and uses a constraint solver to generate string

modification [51]. Martinez and Monperrus mine semantic

code modifications(which they referred to as repair actions)

from human patches and attach a probability distribution to

the mined repair actions [40]. None of these techniques focus

on repairing regression errors.

Utilizing Previous Version as a fix Various studies specu-

late on the possibility of locating fixes from various program

versions [24], [28], [41]. Martinez et. al. demonstrates that

statements or expressions that are required for fixing exist in

previous commits of the programs [41]. Barr et al. analyzes

commits from several open-source Java projects and they

found that commits can be reconstructed from codes from

the preceeding versions [28]. Alkhalaf et al. uses semantic

differences between a reference function and a target function

to synthesize a validation, a length, and a sanitization patch

for repairing web-application code [24]. We share similar

observation that the previous program version may be used

for automatic repair generation, specifically in fixing Local

regression bugs. The key difference is that some of our

contextual operators use program location information from

the previous version, while other operators utilize program

expressions from the current version. Furthermore, to the best

of our knowledge, ours is the first work to develop a repair

method and tool specifically for patching regression bugs.

IX. CONCLUSIONS

In this paper, we proposed relifix– an approach of automated

repair of software regression. This was achieved by consider-

ing the regression repair problem as a problem of reconciling

problematic changes. We justified our claim using a set of

contextual operators derived from our manual inspection of 73

real software regressions. Our evaluation on 35 real regression

bugs shows that relifix can repair 23 bugs, while GenProg only

fixes five bugs. Our experimental results with the reduced test

suite suggests that our approach is less likely to introduce new

regression compared to GenProg.

In future, we plan to investigate the usage of semantic differ-

ences between two program versions for repairing regressions.

While we focus on two program versions in this study, we

believe that extending the work to multiple versions poses

unique challenges. Hence, we plan to perform further studies

on multiple program versions. We are also interested in the

integration of this approach with test generation frameworks

and building an IDE plugin for the integration.
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