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ABSTRACT
Program reduction is a widely used technique to facilitate debug-
ging compilers by automatically minimizing programs that trigger
compiler bugs. Existing program reduction techniques are either
generic to a wide range of languages (such as Perses and Vulcan)
or specifically optimized for one certain language by exploiting
language-specific knowledge (e.g., C-Reduce). However, synergisti-
cally combining both generality across languages and optimality
to a specific language in program reduction is yet to be explored.

This paper proposes LPR, the first LLMs-aided technique lever-
aging LLMs to perform language-specific program reduction for
multiple languages. The key insight is to utilize both the language
generality of program reducers such as Perses and the language-
specific semantics learned by LLMs. Concretely, language-generic
program reducers can efficiently reduce programs into a small size
that is suitable for LLMs to process; LLMs can effectively transform
programs via the learned semantics to create new reduction op-
portunities for the language-generic program reducers to further
reduce the programs.

Our thorough evaluation on 50 benchmarks across three pro-
gramming languages (i.e., C, Rust and JavaScript) has demonstrated
LPR’s practicality and superiority over Vulcan, the state-of-the-art
language-generic program reducer. For effectiveness, LPR surpasses
Vulcan by producing 24.93%, 4.47%, and 11.71% smaller programs
on benchmarks in C, Rust and JavaScript, separately. Moreover, LPR
and Vulcan have the potential to complement each other. For the C
language for which C-Reduce is optimized, by applying Vulcan to
the output produced by LPR, we can attain program sizes that are
on par with those achieved by C-Reduce. For efficiency, LPR is more
efficient when reducing large and complex programs, taking 10.77%,
34.88%, 36.96% less time than Vulcan to finish all the benchmarks
in C, Rust and JavaScript, separately.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Program Reduction, Large Language Models, Compiler Testing

1 INTRODUCTION
Program reduction techniques [8, 14, 15, 23–25, 30, 33, 35, 42] aim
to facilitate compiler debugging by minimizing the bug-triggering
programs with efficacy and efficiency. Given a program 𝑃 and a
property𝜓 that 𝑃 preserves, program reduction techniques (a.k.a.,
program reducers) produce a minimal program 𝑃min that still pre-
serves𝜓 . Program reduction has been widely used in various soft-
ware engineering tasks [7], especially in compiler testing and de-
bugging [18, 21].

However, a critical challenge in program reduction has not been
properly addressed, i.e., the trade-off between generality across
languages and specificity to a certain language. Currently, there
are two categories of program reduction techniques: language-
specific [14, 15, 25] and language-generic [23, 30, 42, 44, 45]. The
former category leverages language-specific semantics to trans-
form and shrink programs in certain languages, while the latter
only uses transformations applicable to any programming language.
Although language-specific reducers are usually more effective in
reduction, designing an effective reducer for a specific language,
especially designing language-specific transformations, requires a
deep understanding of language features and a significant amount
of time and engineering effort. Therefore, only a limited set of lan-
guages have custom-designed reducers, such as C [25], Java [14, 15],
and SMT-LIBv2 [24]. Meanwhile, language-generic reducers can
be applied to diverse languages, but lack the knowledge of lan-
guage features and semantics and thus are incapable of performing
language-specific transformations (e.g., function inlining) that can
enable further reduction. As a result, they cannot utilize peculiar
features of each language to achieve optimal reduced programs.

This study strives to find a sweetspot between generality across
languages and specificity to a certain language, by synergistically
combining the strengths of both categories of program reduction
techniques. Specifically, we notice that the major limitation of
language-generic reducers lies in their incapability to perform
language-specific transformations. Language-generic reducers such
as Perses stand out as high generality when reducing programs
across various programming languages, while they lack awareness
of semantic information to achieve further progress. If we could
help language-generic reducers conquer this limitation, they are
likely to produce smaller results.

Meanwhile, we also notice that recent progress in Large Lan-
guage Models (LLMs) could be a powerful assistant in performing
language-specific transformations, like its performance in other
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scenarios of software engineering tasks such as code generation
and test generation [5, 9, 11, 13, 31, 37, 40]. Specifically, LLMs are
trained with massive programs, and they have started to exhibit the
ability to analyze and transform programs in prevalent languages.
If we can properly leverage this ability for program reduction, we
may have a language-generic reducer being aware of the semantics
of various prevalent languages. Besides, the utilization of LLMs can
simplify the customization and extension of reducers, as it would
be time-consuming and labor-intensive to manually implement a
language-specific reducer or add functionality to an existing one
(such as C-Reduce which uses the Clang frontend to implement
C-specific program transformations).
Challenges of Using LLMs. LLMs are not the silver bullet to
program reduction. They face challenges like understanding sub-
tle differences [19] in code, getting easily distracted by irrelevant
context [27] and performing poorly with large inputs due to cata-
strophic forgetting [4, 10, 16]. Specifically, in program reduction,
LLMs may not be capable of reducing large programs directly be-
cause of distraction and catastrophic forgetting. Without effective
guidance, LLMs are unclear about what transformations to perform.
LLMs-Aided ProgramReduction (LPR). Wepropose LPR (Large
languagemodel aided program reduction) in this paper, which is,
to the best of our knowledge, the first approach that integrates
LLMs for program reduction task. LPR synergistically leverages the
strengths of both language-generic program reducers and LLMs.
Specifically, LPR alternates between invoking a language-generic re-
ducer (we use Perses in experiments) and the LLM. Initially, Perses
efficiently reduces large programs to a size manageable for the
LLM. Subsequently, the LLM further transforms Perses’s output
based on specific user-defined prompts that dictate the required
transformations. Following this, Perses is re-invoked, as transfor-
mations made by the LLM often create additional opportunities for
reduction. This process iterates until the program cannot be further
minimized. For transformations, we have identified five language-
generic transformations to enable further reduction: Function Inlin-
ing, Loop Unrolling, Data Type Elimination, Data Type Simplification,
and Variable Elimination.

To address the aforementioned challenge of using LLMs, LPR
is designed with a multi-level prompting approach. In detail, LPR
initially requests the LLM to identify a list of potential targets for a
given transformation, and then sequentially instructs the LLM to
apply the transformation on each target. The multi-level prompt
guides the LLM in a more concentrated way, by excluding irrelevant
context and other targets that may distract the LLM.

We have conducted extensive evaluations on LPR, illustrating its
superiority over Vulcan, the state-of-the-art language-generic algo-
rithm. On three benchmark suites, i.e., Benchmark-C, Benchmark-
Rust and Benchmark-JS, LPR produces significantly smaller pro-
grams than Vulcan by 24.93%, 4.47% and 11.71%, separately. More-
over, LPR and Vulcan complement each other to some extent. For
the C language which C-Reduce is optimized for, by applying Vul-
can to the output produced by LPR, we can attain program sizes
that are on par with those achieved by C-Reduce. For efficiency, LPR
performs comparably to Vulcan. In terms of execution time, LPR
is more efficient than Vulcan on reducing complex programs. Fur-
thermore, our detailed analysis indicates that each of the proposed

transformations plays a crucial role in the reduction process. We
also compare the performance with the multi-level prompt against
that without it, illustrating the efficacy of our proposed multi-level
prompting approach.
Contribution. This study makes the following contributions.
• We introduce LLMs-Aided Program Reduction (LPR), marking the
first algorithm that integrates LLMs into the program reduction
process. By synergizing the capabilities of both language-generic
tools and LLMs, LPR achieves a balance between generality across
various languages and awareness of semantics in specific lan-
guages. Simultaneously, it maintains flexibility in the design and
extension of new transformations.
• We propose a multi-level prompting approach to guide LLMs to
execute program transformations, and demonstrate its effective-
ness in practice. We propose five general-purposed transforma-
tions for LLMs to reduce programs or expose more reduction
opportunities.
• We comprehensively evaluated LPR on 50 benchmarks across
three commonly used languages: C, Rust and JavaScript. Results
demonstrate LPR’s strong effectiveness and generality.

2 BACKGROUND
2.1 Program Reduction
Given a program 𝑃 with a certain property, e.g., triggering a com-
piler bug, the goal of program reduction is to search for a minimal
program 𝑃min that still triggers the bug. Program reduction has
demonstrated its significant usefulness in removing bug-irrelevant
code snippets. The original bug-triggering code [17, 21, 28, 43] may
have thousands of lines, whereas the distilled version from program
reduction tools only contains dozens of lines of code [29]. Some
algorithms are designed to generalize across multiple programming
languages, while others are customized for certain languages.

2.1.1 Language-Generic Reducers. Some reducers can be gener-
alized to multiple languages. For instance, given the formal syn-
tax of a programming language, algorithms like HDD and Perses
can be used to reduce programs corresponding to that language.
HDD parses the language into a parse tree and then applies the
DDMin [44] at each level of the tree to remove unnecessary tree
nodes as much as possible. Perses goes further than HDD by per-
forming certain transformations on the formal syntax to avoid gen-
erating syntactically incorrect program variants. Vulcan extends
Perses, by introducing novel auxiliary reducers to exhaustively
search for smaller variants by replacing identifiers/sub-trees and
deleting local combinations of tree nodes on the parse tree.

However, different languages possess unique semantic features.
Although the aforementioned algorithms are relatively efficient [30],
they are incapable of utilizing unique semantics of a particular lan-
guage to further reduce a program. For example, these algorithms
lacks the ability to perform transformations like function inlin-
ing. Although Vulcan can identify more reduction opportunities
through transformations such as identifier replacement and local
exhaustive search, its approach is akin to "brute force" enumeration.
This method lacks awareness of the given program’s semantics,
making it less effective and efficient overall.
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2.1.2 Language-Specific Reducers. Previous work has introduced
reducers customized for some specific languages. For example, C-
Reduce [25] is the most effective reduction tool for C code. It com-
prises multiple passes that transform the program based on features
of the language, thereby making it smaller. Language-specific re-
ducers often rely on static program analysis tools for analysis and
modification, e.g., LibTooling [22] is employed in C-Reduce.

However, developing language-specific reducer is nontrivial. To
the best of our knowledge, only a few languages have specific
reducers, such as C [25], Java [14, 15], and SMT-LIBv2 [24]. The
reason is that the process of designing a reducer for a language,
or adding new transformations to an existing reducer, is a time-
consuming and labor-intensive task. For instance, in version 2.10.0
of C-Reduce [26], function inlining was implemented with 604
lines of C++ code. Such challenges impede the development and
maintenance of language-specific reducers.

2.2 Large Language Models
Large Language Models refer to a type of deep learning technique
that is trained on massively huge data sets for diverse tasks. The
advent of LLMs has opened up numerous potential opportunities
across diverse research fields. LLMs are not only proficient in pro-
cessing natural languages but also exhibit substantial capabilities in
understanding and processing programming languages. This high-
lights the promising future and evolutionary prospects in the realm
of software engineering. Recently, LLMs have been applied and
assessed on various software engineering tasks, such as automatic
program repair [9, 12, 39–41] and program generation [20, 32, 46].

However, despite the usefulness of LLMs, some researchers [19]
illustrate that current LLMs are weak in distinguishing nuances be-
tween programs. Moreover, the memorizing and processing capac-
ity of LLMs deteriorates as the input size grows, a.k.a., catastrophic
forgetting [4, 10, 16]. Moreover, one cannot expect LLMs to auto-
matically complete complex tasks; they must be guided accordingly.
Therefore, for program reduction, directly asking LLMs to reduce
programs with tens of thousands of lines is impractical.

3 APPROACH
In this section, we first introduce a motivating example, then we
provide an overview of the LPR workflow. We also outline the
details of prompts and proposed transformations in the workflow
that enable the LLM to function effectively with given programs.

3.1 Motivation
A motivating example is displayed in Figure 1, the original code

contains highly nested loops, shown in Figure 1a. From Figure 1b to
Figure 1c, the nested loops are fully unrolled into hundreds of lines
via Loop Unrolling, based on the semantic transformations from
the LLM. Despite the temporary size increase, the following Perses
effectively eliminates all lines except for the bug-relevant one. This
is also the final result of LPR, presented in Figure 1d. By contrast, as
shown in Figure 1e, Vulcan is incapable of escaping the local minima
by exhaustively replacing identifiers and tree nodes. Moreover, C-
Reduce is not integrated with transformations to unroll loops, and
thus cannot fully break down the loop structures. Even though loop
unrolling techniques can be added into C-Reduce in future versions,

it will be labor-intensive to implement a specific transformation
compared to user-defined prompts in natural language.

3.2 Workflow

Algorithm 1: LPR (𝑃 ,𝜓 , prompts)
Input: 𝑃 : the program to be reduced.
Input:𝜓 : P→ B: the property to be preserved by 𝑃 .
Output: 𝑃min: the reduced program that preserves the property.

1 repeat/* Monotonically minimize the size of 𝑃. */

2 𝑃min ← 𝑃

3 transformList← getTransformList (prompts)
// Iterate through each transformation.

4 foreach transform ∈ transformList do
5 primaryQuestion← getPrimaryQuestion (transform)
6 followupQuestion← getFollowupQuestion (transform)

// Ask LLM to identify a list of targets.

7 targetList← getTargetList(𝑃 , primaryQuestion)
8 foreach target ∈ targetList do

// Ask LLM to apply the transformation on the

target.

9 𝑃tmp← applyTransformation (𝑃 , followupQuestion,
target)

10 if 𝜓 (𝑃tmp) then
11 𝑃 ← 𝑃tmp

// Invoke language-agnostic, e.g., Perses, for

further reduction.

12 𝑃 ← Perses (𝑃 ,𝜓 )

13 until |𝑃 | ≥ |𝑃min |
14 return 𝑃min

The overview of the workflow is outlined in Figure 2. Given a
bug-triggering program as input, LPR invokes a language-generic
reducer and the LLM alternately, until the target program cannot
be further reduced. In each iteration, the language-generic reducer
efficiently reduces the given program to 1-tree-minimality in syntax
level. By contrast, the LLM leverages the semantic knowledge of
the language and transforms the program given by the language-
generic reducer. This process is guided by user-defined prompts,
aiming to expose more reduction potentials to the language-generic
reducer.

Algorithm 1 shows LPR’s reduction algorithm. Given as in-
puts (1) a program 𝑃 targeted for reduction, (2) a property𝜓 that
must be preserved, and (3) the pre-defined prompts, LPR generates
a reduced program 𝑃𝑚𝑖𝑛 . prompts contains primaryQuestion and
followupQuestion. primaryQuestion instructs the LLM to identify a
list of targets to be transformed, and followupQuestion guides the
LLM to apply transformation on each target individually. They will
be further introduced in §3.4. Initially, LPR loads a sequence of
transformations as delineated in line 3. It then iterates through
each transformation, as detailed from line 4 to line 12. §3.3 displays
the details of each transformation.

During this process, for each transformation, the algorithm re-
trieves a predefined primary question along with a follow-up ques-
tion on line 5 – line 6. LPR first asks the LLM the primary question
under the current program. This query aims to guide the LLM to
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1 ......

2 // nested loop

3 for (i = 0; i < 7; i++)

4 for (j = 0; j < 5; j++)

5 for (k = 0; k < 7; k++)

6 fn8(ad[i][j][k], "g_643[i][j][k]", aj);

7 ......

(a) Original

1 ......

2 for (i = 0; i < 7; i++)

3 for (j = 0; j < 5; j++)

4 for (k = 0; k < 7; k++)

5 s = s ^ ad[i][j][k];

6 ......

(b) LPR: Before Loop Unrolling

1 ......

2 // the nested loop is fully unrolled

3 // into hundreds of lines

4 s = s ^ ad[2][0][5];

5 s = s ^ ad[2][0][6];

6 s = s ^ ad[2][1][0];

7 s = s ^ ad[2][1][1];

8 ......

(c) LPR: After Loop Unrolling

1 ......

2 // all lines except for the bug-triggering one

3 // is removed by Perses

4 s = ad[2][1][0];

5 ......

(d) Final result of LPR

1 ......

2 for (i = 0; i < 7; i++)

3 for (j = 0; j < 5; j++)

4 for (k = 0; k < 7; k++)

5 fn8(ad[i][j][k], "g_643[i][j][k]", aj);

6 ......

(e) Final result of Vulcan

1 ......

2 for (; h < 7; h++) {

3 j = 0;

4 for (; j < 5; j++)

5 printf("%

6 }

7 ......

(f) Final result of C-Reduce

Figure 1: Code snippet from LLVM-31259, showcasing the original code, the effectiveness of Loop Unrolling, and the final results
by LPR, Vulcan and C-Reduce.

Input OutputLanguage-generic
reducer

Semantic level
transformation

Syntactical level
reduction

Guide LLM via
multi-level prompts

Minimal
program

Transformation

Function
Inlining

Variable
Elimination

Loop
Unrolling

Loop

LLM

Data Type
Elimination

Data Type
Simplification

Figure 2: The workflow of LPR.

generate a list of specific targets upon which the transformation
will be executed. For instance, for Loop Unrolling in the motivating
example Figure 1b, the LLM is asked to identify a list of loops in the
given program to be unrolled in the primaryQuestion, and returns
a target list [for(i=0;...), for(j=0;...), for(k=0;...)].

On line 8 to 11, LPR uses followupQuestion to guide LLM to apply
the transformation on each identified target within the program.
In the motivating example, the followupQuestion can be framed as
“Given the program { PROGRAM } and the loop for(i=0;...),
optimize it via loop unrolling”. The modified program is then ex-
tracted from the LLM’s response text on line 9. In the example, all
loops are unrolled into repeated lines of code in Figure 1c.

In experimental scenarios, given an input program and the prompt,
the LLM may generate multiple transformed programs, as the num-
ber of responses can be customized. Among all transformed pro-
grams, LPR keeps the smallest one that still passes the property test,
and discards others. If no transformed program returned from this
query satisfies the property, LPR keeps the original one before this
query. After each transformation is completed, language-agnostic
reducers such as Perses [30] are employed to seek additional reduc-
tion opportunities, considering that the transformation might have
introduced new potentials for further simplification. The algorithm

persists in the outermost loop until it reaches a fixpoint, signifying
that the program size can no longer be reduced.

3.3 Transformations
To further search formore reduction opportunities on a bug-triggering
program via the LLM, we propose five general transformations to
guide the LLM, i.e., Function Inlining, Loop Unrolling, Data Type
Elimination, Data Type Simplification and Variable Elimination.
Function Inlining. This transformation identifies a function and
performs function inlining to eliminate all call sites of this function,
and instead substitutes them with corresponding the function body.
As functions are prevalent presented in bug-triggering programs,
there is significant room for function inlining to reduce tokens or
provide further reduction opportunities.
Loop Unrolling. Loop unrolling, also known as loop unwind-
ing, is a widely used loop transformation approach to optimize
the execution. In this task, it can also be employed to find more
reduction opportunities. Loop Unrolling identifies a loop structure
and attempts to unroll the loop into a code snippet repeating a
single iteration. Motivation lies in that language-generic reducers
may be incapable of dismantling or directly removing the loop
structure, while they may be able to reduce the repeated code after
loop unrolling, as shown in Figure 1.
Data Type Elimination. Some data types in bug-triggering
programs may be irrelevant to the bug, such as identifiers defined
by typedef in C, and type alias created by type keyword in Rust.
We propose Data Type Elimination to eliminate the alias and replace
the occurrence of each alias with its associated original data type.
DataType Simplification. In programswith complex data types,
such as structures, arrays, and pointers, not all components are
essential for maintaining bug-triggering properties. For example,
a bug-triggering program containing a struct with three integer
members can be simplified into three distinct integer variables, and
possibly only one variable is essential. To facilitate this simplifica-
tion, we introduce Data Type Simplification, a strategy designed to
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transform variables of complex data types into variables of primitive
data types, like integers or floats.
Variable Elimination. Intermediate variables are pervasive in
programs, and reducing them is desirable in program reduction
tasks. Besides, some variables, although not being used, are hard to
eliminate. For instance, to remove an unused parameter, both the
parameter defined in the function and its corresponding argument
passed to the call site of this function should be removed simul-
taneously. This is hard or even impossible for language-generic
reduction tools. Therefore, we propose Variable Elimination to opti-
mize out both intermediate and unused variables.

The proposed transformations are universally applicable across
various programming languages, offering a broad utility. By per-
forming these transformations on programs via the LLM, substantial
human effort is saved from designing and implementing reducers
that target these transformations. While certain existing language-
specific reducers like C-Reduce, may already incorporate some of
these transformations, e.g., Function Inlining and Variable Elimina-
tion, creating new transformation passes remains a non-trivial task
for users. Our approach not only simplifies this process but also
extends its reach across multiple programming languages.

3.4 Multi-level Prompts
Prompts enable LLMs to apply the transformations mentioned
above. We take Function Inlining as an example. We avoid directly
instructing the LLM to perform transformations exhaustively, such
as inlining all functions in a program in a single query, which might
overwhelm its processing capabilities, especially for programs with
multiple functions. Instead, we employ a multi-level prompting ap-
proach. Figure 3 presents an example of Function Inlining. First, we
pose a primary question to the LLM (step 1 ): “Given the following
program { PROGRAM }, identify all functions that can be inlined.”
Based on the list provided by the LLM (step 2 ), we then ask a
series of follow-up questions (step 3 and step 5 ) like “Given the
following program { PROGRAM } and the specified function { fn1
}, optimize { fn1 } out via function inlining.”, and the LLM do the
transformations accordingly (step 4 and step 6 ). This strategy
excludes irrelevant context and ensures that the queries are more
targeted, thereby increasing the likelihood of the LLM generating
high-quality results. For other transformations, the prompts follow
a similar template — first prompting the LLM to identify a target
list, and then instructing it to attempt optimization of each target.

4 EVALUATION
In this section, we evaluate the effectiveness and efficiency of LPR.
Specifically, we conducted the following research questions.
RQ1. What is the effectiveness of LPR in program reduction?
RQ2. What is the efficiency of LPR in program reduction?
RQ3. What is the effectiveness of each transformation in LPR?

4.1 Experimental Setup
Within the workflow of LPR, we employ Perses [30] as the language-
agnostic reducer due to its superior efficiency compared to Vulcan.
Additionally, we utilize OpenAI API [1], specifically the gpt-3.5-
turbo-0613 version, to serve as the LLM. We also develop a variant
named LPR+Vulcan, which invokes Vulcan to further reduce the

program after LPR finishes. For a fair comparison, all algorithms
were executed in a single-process, single-thread environment.
Benchmarks. To measure the effectiveness and efficiency of
LPR across various languages, we employ three benchmark suites:
Benchmark-C, Benchmark-Rust and Benchmark-JS. The Benchmark-
C, previously collected and utilized by previous studies [34, 42, 45],
comprises 20 large complex programs triggering real-world bugs in
LLVM or GCC. Benchmark-Rust, incorporating 20 bug-triggering
Rust programs, has also been used in prior research [42]. We fur-
ther craft Benchmark-JS, a non-public benchmark suite, for this
study. Specifically, we use FuzzJIT [36] to fuzz a prevalent JavaScript
engine, i.e., JavaScriptCore (version c6a5bcc), and then randomly
collect 10 programs that cause miscompilations in JIT compiler.
Since the programs and reduced programs in Benchmark-JS are
not publicly available and thus not in the training sets of LLMs.
The evaluation on Benchmark-JS helps us investigate whether LPR
suffers from the data leakage problem [38]. In total, the evaluation
benchmarks encompass 50 programs triggering real-world bugs in
compilers, spanning across three popular programming languages.
Baselines. In all three benchmark suites, we use Perses and
Vulcan as baselines. Perses stands out as a highly effective and effi-
cient program reduction tool. To avoid the occurrence of syntactical
invalid variants during the reduction process, it transforms and nor-
malizes the formal syntax of a programming language. Vulcan [42],
building upon Perses, provides three manually designed auxiliary
reducers to further search for reduction opportunities on results
from Perses. Compared to Perses, Vulcan achieves a reduction in
the number of tokens, albeit at the expense of increased running
time. They are both language-generic and are applicable across
a broad spectrum of programming languages. We also include C-
Reduce (v2.9.0) as an additional baseline. C-Reduce not only stands
as the most effective algorithm for C, it can also be applied to other
languages, though not customized for them.
Configuration. If not otherwise specified, our experiments are
conducted by invoking OpenAI API (version gpt-3.5-turbo-0613),
with the proposed multi-level prompt and transformations in §3.3
and §3.4. To effectively harness the inherent randomness of LLMs,
we set temperature=1.0. This high value encourages the LLM to
generate more diverse outcomes [3]. Additionally, we employ n=5
to generate five distinct results for every query [2], enabling us to
choose the smallest passing program as the optimal result. All the
rest configurations are set to their default values.

4.2 RQ1: Effectiveness
We measure the effectiveness of LPR, LPR+Vulcan and baseline
algorithms via the final program size in token. A smaller size is
favored, as it signifies the removal of more bug-irrelevant code,
thereby saving developers more manual effort. The effectiveness
of each algorithm on all three benchmark suites is presented in
Table 1. Due to the randomness of LPR, we repeat five times for LPR
and LPR+Vulcan on every benchmark, and display the mean and
standard deviation in the table. On each benchmark, the minimal
results are highlighted in bold.
Benchmark-C. On this benchmark suite, Perses reduces the pro-
grams to an average of 247.8 tokens. Building upon this, Vulcan
further compresses the average program size into 157.4, i.e., thereby
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The program with fn1 inlined is
Response to Followup Question (fn1)

int fn2 (int a) { return a + a; }
int main () {

int x = 1;
int y = fn2(x);
return 0;

}

Given the following program { PROGRAM } and
the specified function { fn1 }, optimize { fn1 } out 
via function inlining.

Followup Question (fn1)

Given the following program { PROGRAM }, 
identify all functions that can be inlined. Please 
write the identified functions into a target_list: [a 
list of function names].

Primary Question

Given the following program { PROGRAM } and
the specified function { fn2 }, optimize { fn2 } out 
via function inlining.

Followup Question (fn2)

int fn1 () { return 1; }
int fn2 (int a) { return a + a; }
int main () {

int x = fn1();
int y = fn2(x);
return 0;

}

Original Program

You are an assistant for 
program analysis and 
transformation. Please give
the required information
based on your understanding.

System Prompt

For the given program and request, the
target_list is { [fn1, fn2] }

Response to Primary Question

Response to Followup Question (fn2)

int main () {
int x = 1;
int y = x + x;
return 0;

}

The program with fn2 inlined is

Figure 3: An example of prompt design. and denote system prompt and user prompt provided by the users. denotes the
responses from the LLM.

continues to decrease the program size by 34.35%. Despite Vulcan’s
notable reduction progress, LPR is still capable of continuing to
push the limit of Perses, and reduces the programs in Benchmark-C
into 105.8 tokens on average across all five runs. It cuts down the
average program size of Perses by 51.33%, outperforming Vulcan sig-
nificantly by 24.93% (proved by a p-value of 0.002). C-Reduce stands
out by achieving the lowest average program size, i.e., 85.7 tokens.
This performance is anticipated as C-Reduce incorporates various
transformation passes specifically designed for C. Despite relying
on only general transformations, LPR+Vulcan still achieves perfor-
mance comparable to C-Reduce, averaging 86.1 tokens. Moreover,
it outperforms C-Reduce in 13 out of 20 benchmarks, highlighting
its effectiveness with only language-generic transformations.
Benchmark-Rust. On Benchmark-Rust, Perses and Vulcan pro-
duce programs with 212.5 and 184.2 tokens on average, separately.
LPR and LPR+Vulcan further shrink the average program size into
147.5 and 135.5 tokens. C-Reduce produces the second-largest pro-
grams on average, only smaller than Perses. This is anticipated
since C-Reduce lacks specialized transformations for Rust.

Further analysis into these benchmarks reveals that Vulcan and
transformations in LPR are complementary on Benchmark-Rust.
Vulcan shows higher effectiveness on reducing relatively smaller
programs, as evidenced by the average original size of 43 tokens in
the 9 programs where it is better than LPR. In contrast, the 15 pro-
grams where LPR is proved better than Vulcan have an average of
269 tokens, indicating its proficiency on reducing relatively larger
programs. Our speculation is that Vulcan and LPR target different
reduction opportunities. Vulcan performs identifier/sub-tree re-
placement and local exhaustive search. Such reducers, while lacking
in semantic analysis, find reduction opportunities in a "brute-force"
manner and is particularly effective at uncovering less obvious

reduction opportunities. On the other hand, LPR employs more se-
mantic and intelligent transformations, adeptly and systematically
analyzing and reducing a complex program step by step. Moreover,
results of LPR+Vulcan in the last column prove the complementary
characteristic between LPR and Vulcan, which achieve the best in
16 out of the total 20 benchmarks.
Benchmark-JS. Programs in Benchmark-JS are much simpler
and smaller than those in the previous two benchmark suites. There-
fore, even Perses alone is capable of reducing the programs to only
55.5 tokens. Following this, Vulcan, LPR and LPR+Vulcan achieve
38.2, 33.9 and 27.5 tokens, further reducing the average results by
30.35%, 38.66% and 38.66%, separately. Similar to its performance
on Rust, C-Reduce cannot outperform the aforementioned algo-
rithms on JavaScript, due to its lack of employment of JavaScript’s
semantics. The evaluation results also serve to demonstrate that
the performance exhibited by LPR is not attributable to data leak-
age. These benchmarks were collected by the authors via fuzzing,
and the optimal results remain inaccessible to the public, thereby
precluding any possibility of LLMs memorizing them.

RQ1: LPR improves Perses by producing 51.33%, 14.87%
and 38.66% smaller programs on three benchmarks. Moreover,
LPR+Vulcan improves Vulcan, by 36.73%, 14.39% and 28.15%. On
C language, LPR+Vulcan performs comparably to C-Reduce, a
language-specific reducer for C language.

4.3 RQ2: Efficiency
In this research question, we measure the time consumed by each
technique on three benchmarks. Shorter time indicates higher ef-
ficiency. Table 2 shows the results. Since both Vulcan and LPR
perform reduction on top of Perses’s results, it is impossible for
these two algorithms to take less time than Perses. Besides, as a
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Table 1: The reduction size of Perses, Vulcan, C-Reduce, LPR
and LPR+Vulcan. Best results among all algorithms are high-
lighted in bold font.

Benchmark Original Perses Vulcan C-Reduce LPR LPR+Vulcan
LLVM-22382 21,068 144 108 70 73.2 ± 1.6 69.8 ± 1.8
LLVM-22704 184,444 78 62 42 43.6 ± 3.1 41.8 ± 3.3
LLVM-23309 38,647 464 303 118 105.8 ± 9.3 91.2 ± 8.2
LLVM-23353 30,196 98 91 74 68.8 ± 8.0 66.6 ± 6.5
LLVM-25900 78,960 239 104 90 93.4 ± 11.1 84 ± 6.5
LLVM-26760 209,577 120 56 43 62.8 ± 18.6 52.6 ± 5.4
LLVM-27137 174,538 180 88 50 69.2 ± 19.2 65 ± 20.2
LLVM-27747 173,840 117 79 68 87.8 ± 2.5 63.2 ± 2.2
LLVM-31259 48,799 406 282 168 184.0 ± 51.2 114.4 ± 10.9
GCC-59903 57,581 308 198 105 209.8 ± 72.1 166.4 ± 64.0
GCC-60116 75,224 443 247 168 188.8 ± 52.4 127.6 ± 34.8
GCC-61383 32,449 272 195 84 113.2 ± 13.6 105.2 ± 5.4
GCC-61917 85,359 150 103 65 78.4 ± 10.6 73.4 ± 5.5
GCC-64990 148,931 239 203 65 143.4 ± 58.0 119 ± 50.1
GCC-65383 43,942 153 84 72 64.2 ± 2.7 64.2 ± 2.7
GCC-66186 47,481 327 226 115 97.8 ± 17.9 94.2 ± 12.0
GCC-66375 65,488 440 227 56 56.0 ± 5.1 56.0 ± 5.1
GCC-70127 154,816 301 230 84 95.0 ± 3.8 73.6 ± 3.3
GCC-70586 212,259 426 223 130 235.4 ± 30.2 156.8 ± 12.6
GCC-71626 6,133 51 38 46 44.6 ± 3.4 36.6 ± 0.9

Be
nc
hm

ar
k-
C

Mean 94,487 247.8 157.4 85.7 105.8 ± 4.4 86.1 ± 2.9
Rust-44800 801 467 284 473 124.6 ± 32.4 118.6 ± 34.4
Rust-66851 936 728 713 654 414.2 ± 273.9 331.2 ± 257.8
Rust-69039 190 114 101 110 97.2 ± 8.0 90.8 ± 10.9
Rust-77002 347 263 247 264 96.0 ± 27.9 96.0 ± 27.9
Rust-77320 173 40 40 40 40.0 ± 0.0 39.0 ± 0.0
Rust-77323 81 13 13 13 13.0 ± 0.0 13.0 ± 0.0
Rust-77910 63 34 21 23 29.2 ± 2.7 21.0 ± 0.0
Rust-77919 132 74 62 70 62.2 ± 14.3 58.2 ± 7.7
Rust-78005 182 102 102 75 102.0 ± 0.0 102.0 ± 0.0
Rust-78325 65 29 26 34 29.0 ± 0.0 26.0 ± 0.0
Rust-78651 957 17 9 12 16.6 ± 0.5 11.0 ± 2.7
Rust-78652 263 56 49 49 53.6 ± 2.2 49.0 ± 0.0
Rust-78655 28 26 26 26 26.0 ± 0.0 26.0 ± 0.0
Rust-78720 121 72 56 51 58.4 ± 2.1 56.6 ± 0.5
Rust-91725 513 174 86 101 68.6 ± 57.6 55.2 ± 18.4
Rust-99830 448 299 277 160 271.6 ± 12.5 230.2 ± 62.6
Rust-111502 192 166 157 161 104.8 ± 7.2 103.6 ± 8.2
Rust-112061 556 458 442 450 385.0 ± 32.6 380.4 ± 31.8
Rust-112213 866 736 635 732 653.0 ± 34.0 618.8 ± 22.9
Rust-112526 644 382 338 545 304.0 ± 30.3 283.2 ± 23.3

Be
nc
hm

ar
k-
Ru

st

Mean 378 212.5 184.2 202.2 147.5 ± 11.1 135.5 ± 10.1
JS-1 244 52 41 41 25.6 ± 0.5 24.8 ± 1.6
JS-2 112 51 41 40 34.0 ± 6.5 27.8 ± 3.5
JS-3 125 57 41 47 51.6 ± 12.1 35.4 ± 7.7
JS-4 185 65 35 47 33.4 ± 2.2 28.2 ± 6.9
JS-5 178 66 38 52 41.6 ± 2.2 33.8 ± 5.5
JS-6 152 57 30 45 20.0 ± 2.8 19.2 ± 2.7
JS-7 144 46 38 38 34.0 ± 0.0 27.2 ± 6.3
JS-8 121 55 47 45 40.6 ± 6.3 33.0 ± 17.4
JS-9 87 50 30 32 23.8 ± 2.5 18.8 ± 5.2
JS-10 63 56 41 43 34.8 ± 5.1 27.0 ± 6.3

Be
nc
hm

ar
k-
JS

Mean 141 55.5 38.2 43.0 33.9 ± 1.6 27.5 ± 5.9

highly efficient tree-based reduction algorithm, Perses is gener-
ally faster than C-Reduce. Therefore, we focus on the comparison
among Vulcan, C-Reduce and LPR.

In the Benchmark-C, compared to Vulcan and LPR, C-Reduce
generally has a shorter reduction time. This is expected, as C-
Reduce’s transformations are specifically designed for C languages,
whereas Vulcan approaches the problem in a more unguided and
brute-force manner, and LPR’s attempts are not specifically de-
signed for C and rely more on the efficiency of LLMs. On average,
LPR takes 1:54:54, which is 10.77% shorter than 2:08:46 of Vulcan.
However, in terms of the average percentage difference in time, LPR

Table 2: The reduction time (in the format of hh:mm:ss) of
Perses, Vulcan, C-Reduce, LPR and LPR+Vulcan.

Benchmark Perses Vulcan C-Reduce LPR LPR+Vulcan
LLVM-22382 0:06:46 0:17:03 0:14:46 0:39:43 ± 0:17:13 0:44:33 ± 0:16:46
LLVM-22704 0:33:58 0:38:03 0:22:38 0:48:53 ± 0:01:03 0:52:17 ± 0:01:23
LLVM-23309 0:22:34 2:02:39 0:48:47 1:35:13 ± 0:13:36 2:05:40 ± 0:14:16
LLVM-23353 0:10:31 0:15:05 0:13:36 0:25:23 ± 0:06:05 0:30:47 ± 0:06:33
LLVM-25900 0:09:53 0:23:08 0:22:04 0:44:03 ± 0:07:56 0:54:33 ± 0:07:21
LLVM-26760 0:21:54 0:34:23 0:32:25 0:54:40 ± 0:18:08 1:04:28 ± 0:16:51
LLVM-27137 1:54:41 3:15:20 2:21:43 2:33:15 ± 0:09:08 3:13:24 ± 0:08:48
LLVM-27747 0:13:32 0:28:02 0:25:30 0:32:04 ± 0:02:28 0:45:53 ± 0:03:17
LLVM-31259 0:32:30 4:03:54 1:13:20 4:08:08 ± 0:34:26 5:01:39 ± 0:54:49
GCC-59903 0:48:47 1:21:15 1:23:10 2:14:57 ± 0:45:14 2:44:43 ± 0:48:09
GCC-60116 0:36:18 2:02:01 1:15:45 3:16:38 ± 0:31:53 4:25:39 ± 0:34:36
GCC-61383 0:44:59 3:50:40 1:00:39 2:52:39 ± 0:30:41 4:36:47 ± 0:22:35
GCC-61917 0:14:57 0:24:16 0:44:26 0:37:28 ± 0:07:37 0:43:30 ± 0:07:31
GCC-64990 0:51:05 1:27:12 1:20:05 2:03:05 ± 0:31:38 2:22:37 ± 0:22:33
GCC-65383 0:17:05 0:37:02 0:33:45 0:46:53 ± 0:05:25 0:59:14 ± 0:05:08
GCC-66186 0:41:19 5:35:16 1:24:13 2:39:23 ± 0:19:26 4:05:34 ± 0:36:49
GCC-66375 0:46:28 3:59:57 2:02:40 2:30:08 ± 0:10:24 3:06:41 ± 0:10:44
GCC-70127 0:44:47 4:45:15 1:40:01 2:23:13 ± 0:20:36 3:24:03 ± 0:20:20
GCC-70586 1:33:35 6:53:31 1:37:16 6:24:35 ± 1:26:57 10:36:26 ± 2:32:53
GCC-71626 0:00:40 0:01:18 0:04:06 0:07:38 ± 0:01:27 0:08:11 ± 0:01:32

Be
nc
hm

ar
k-
C

Mean 0:35:19 2:08:46 0:59:03 1:54:54 ± 0:05:17 2:37:20 ± 0:08:05
Rust-44800 0:13:32 1:58:31 1:33:17 1:47:29 ± 0:31:37 2:15:39 ± 0:42:02
Rust-66851 0:59:47 8:49:11 1:32:02 11:21:39 ± 9:56:51 16:43:40 ± 12:54:53
Rust-69039 0:07:54 1:25:33 0:10:05 0:24:13 ± 0:05:33 0:39:22 ± 0:05:51
Rust-77002 0:04:12 0:20:17 0:29:18 0:52:27 ± 0:15:54 0:58:21 ± 0:15:18
Rust-77320 0:00:06 0:01:22 0:01:51 0:02:36 ± 0:00:32 0:04:05 ± 0:00:32
Rust-77323 0:00:01 0:00:11 0:00:37 0:00:16 ± 0:00:03 0:00:27 ± 0:00:04
Rust-77910 0:00:08 0:00:47 0:01:12 0:04:58 ± 0:01:34 0:05:44 ± 0:01:35
Rust-77919 0:00:17 0:02:46 0:05:29 0:08:45 ± 0:05:08 0:11:18 ± 0:04:52
Rust-78005 0:00:10 0:01:57 0:02:30 0:10:44 ± 0:01:32 0:12:55 ± 0:01:31
Rust-78325 0:00:02 0:00:28 0:01:32 0:00:46 ± 0:00:35 0:01:19 ± 0:00:34
Rust-78651 0:00:04 0:00:23 0:01:09 0:01:33 ± 0:00:33 0:02:02 ± 0:00:36
Rust-78652 0:00:08 0:01:32 0:03:01 0:02:53 ± 0:02:02 0:04:38 ± 0:01:59
Rust-78655 0:00:01 0:00:49 0:01:30 0:02:20 ± 0:00:31 0:03:14 ± 0:00:32
Rust-78720 0:00:16 0:03:47 0:06:31 0:11:44 ± 0:04:47 0:13:52 ± 0:04:55
Rust-91725 0:03:36 0:17:48 0:37:19 0:16:13 ± 0:03:55 0:23:29 ± 0:02:11
Rust-99830 0:48:23 20:08:32 11:12:22 4:23:44 ± 1:02:03 24:28:10 ± 1:37:03
Rust-111502 0:00:55 0:10:35 0:10:23 0:37:29 ± 0:11:08 0:44:39 ± 0:11:13
Rust-112061 0:34:50 4:48:04 1:15:44 5:10:02 ± 3:12:51 8:01:03 ± 3:04:33
Rust-112213 0:56:40 15:21:26 1:08:21 7:33:21 ± 2:44:52 17:07:36 ± 3:34:22
Rust-112526 0:45:36 2:55:07 1:35:52 3:33:13 ± 1:21:21 4:52:26 ± 1:54:13

Be
nc
hm

ar
k-
Ru

st

Mean 0:13:50 2:49:27 1:00:30 1:50:19 ± 0:40:46 3:51:42 ± 0:44:16
JS-1 0:01:29 0:29:19 0:06:59 0:11:47 ± 0:05:01 0:14:32 ± 0:05:00
JS-2 0:02:15 0:17:10 0:11:47 0:14:36 ± 0:01:12 0:29:51 ± 0:04:21
JS-3 0:01:29 0:26:35 0:06:02 0:09:00 ± 0:00:14 0:29:30 ± 0:07:58
JS-4 0:00:19 0:15:43 0:01:44 0:07:22 ± 0:02:35 0:37:07 ± 0:03:57
JS-5 0:00:14 0:04:25 0:01:39 0:10:32 ± 0:04:27 0:22:49 ± 0:04:32
JS-6 0:02:59 0:23:20 0:11:33 0:13:24 ± 0:07:49 0:18:43 ± 0:08:08
JS-7 0:00:15 0:03:30 0:16:21 0:05:28 ± 0:01:06 0:10:52 ± 0:01:09
JS-8 0:00:44 0:13:48 0:02:21 0:08:18 ± 0:02:20 0:13:04 ± 0:02:10
JS-9 0:01:32 0:14:14 0:07:50 0:09:09 ± 0:02:43 0:15:14 ± 0:03:40
JS-10 0:01:31 0:17:44 0:07:24 0:15:04 ± 0:04:13 0:32:32 ± 0:05:37

Be
nc
hm

ar
k-
JS

Mean 0:01:17 0:16:35 0:07:22 0:10:28 ± 0:01:26 0:22:25 ± 0:02:33

requires 45.83% more time compared to Vulcan in Benchmark-C.
The main reason of such a result is that LPR is more efficient than
Vulcan when the program is large and complex, as the transfor-
mations it performs are aware of the semantics and have a higher
success rate in reducing the program. However, when the pro-
gram is small and simple, Vulcan can finish quickly since its search
space becomes considerably small, but for LPR, the time consumed
by the LLM is not decreased significantly and becomes dominant,
which makes LPR less efficient than Vulcan in these benchmarks.
On Benchmark-Rust, The results indicate a similar trend, i.e., LPR
tends to be more efficient when reducing complex programs while
Vulcan is more efficient in small and simple benchmarks. If we only
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keep benchmarks where both tools take longer than one hour, LPR
requires 4.15% and 21.69% less time compared to Vulcan.

In our analysis of Benchmark-Rust, we observed that both LPR
and Vulcan can consume an extreme long time on certain bench-
marks. For instance, Vulcan requires 20 hours for Rust-99830, while
LPR takes a similar duration on Rust-66851 in a specific run. This
extensive time consumption is often due to the frequent invocation
of Perses, which only achieves marginal progress with each trans-
formation. The prolonged duration of Perses is primarily attributed
to the strict syntax of the Rust language. Considering that program
reduction is an NP-complete problem, this inefficiency might be
optimized in future, whereas it cannot be completely eliminated.

After further in-depth analysis, another interesting fact emerges.
On the three benchmark suites, the average time taken by LPR is
1.915, 1.839, and 0.174 hours, respectively. However, within these
durations, the time spent waiting for the LLM responses accounts
for 32.26%, 28.11%, and 72.99%. This experiment involves invoking
the OpenAI API, and might have been limited by high user traffic
and few computational resources allocated. Considering the on-
going advancements in LLMs technology, we believe that LPR’s
efficiency will be substantially improved in the future.

RQ2: LPR is more efficient than Vulcan on more complex pro-
grams with longer processing time, while Vulcan reduces faster
than LPR on simpler and shorter programs.

4.4 RQ3: Effectiveness of Each Transformation
To answer this question, we delve into the impact of each transfor-
mation on program size, alongside their potential to escape the local
minimal program and unlock new reduction opportunities. Our in-
depth analysis focuses on Benchmark-C because of the complexity
of bug-triggering programs.

For each transformation, we measure how the program size
change in each benchmark in Benchmark-C after a specific trans-
formation is performed, and plot the size changes into a box-plot
and red dots, as shown in Figure 4. Additionally, since each trans-
formation is immediately followed by an invocation of Perses, we
also monitor the cumulative size changes resulting from both the
transformation and its subsequent Perses reduction. These changes
are depicted by the blue dots in the second box-plot of each subplot
in Figure 4. Given that a transformation is performed in every itera-
tion, we compute the average size change by dividing the total sum
of size changes for that transformation by the number of iterations.
This approach enables us to thoroughly comprehend how each
transformation influences program size and assess its capacity to
provide further reduction opportunities to Perses.

According to size changes induced by each transformation alone,
i.e., the left box-plot with red dots, we can find two trends. First,
Function Inlining, Data Type Elimination and Variable Elimination
are more likely to reduce the program size by themselves, with an
average of size change -13.2, -4.7 and -4.3, separately. However, for
the rest two transformations, i.e., Loop Unrolling and Data Type
Simplification, most of the program sizes increase instead, with
an average of 14.9 and 1.3 respectively. This is expected, as such
transformations will generally transform the program into a larger
one. Loop Unrolling, disassembles a loop into repeated lines of code,

and leads to size increase temporarily. Data Type Simplification can
dismantle a variable in complex data type, e.g., structure, into a
list of members in primary data types, which may requires more
tokens to declare and initialize each variable.

For size changes induced by both a transformation and the sub-
sequent execution of Perses, i.e., the right box-plot with blue dots,
all of the proposed transformation result in size decreases. The fact
that the right box-plot is generally lower than the left one indicates
that Perses often further removes tokens after the transformation
is applied. For Loop Unrolling and Data Type Simplification, even
though they usually introduce more tokens to the program, they ex-
pose reduction opportunities for the following execution of Perses,
and eventually result in a smaller result.

To further understand the impact of each transformation on the
entirety of Benchmark-C, we provide a detailed analysis of their
contributions. Specifically, on the 5 repeated experiments on 20
benchmarks, we calculate the average size reduction brought about
by each transformation across all these 100 runs by summing up
the size decreases attributed to the transformation in each bench-
mark and then computing the mean. This is illustrated in Figure 5.
Additionally, we quantify the prevalence of each transformation
by counting the number of benchmarks in which it induces a size
decrease, as demonstrated in Figure 6. These metrics together offer
a comprehensive view of how each transformation influences file
sizes and how frequently they take effect within Benchmark-C.

From Figure 5, it is evident that every transformation contributes
to further size reduction in Benchmark-C. Specifically, while Func-
tion Inlining is responsible for a reduction of 88.2 tokens on average,
contributing 62.12% to the overall decrease, Loop Unrolling shows
the minimal impact, contributing only 4.8 tokens, 3.35% to the over-
all decrease. This highlights the varying degrees of influence each
transformation has on code size. Further insights from Figure 6
reveal that Data Type Elimination affects all benchmarks, likely due
to the ubiquitous presence of typedef across all benchmarks. In
contrast, Loop Unrolling is the least prevalent transformation, af-
fecting merely 6 on average out of 20 benchmarks. This outcome is
expected, considering that not all programs involve loop structures,
and not every loop is irrelevant to the bugs in compilers. Besides,
the relatively higher standard deviations observed in the Data Type
Simplification and Loop Unrolling suggest that these transforma-
tions present greater challenges for the LLM to manage effectively.

RQ3: In Benchmark-C, all proposed transformations contribute
to the further reduction by either shrinking the programs directly
or providing reduction opportunities to Perses.

5 DISCUSSION
In this section, we discuss the effectiveness of multi-level prompts
and, the performance of the LLM under different temperatures.

5.1 The Effectiveness of Multi-level Prompt
To validate the effectiveness of our proposed multi-level prompt,
we design the corresponding single-level prompt and compare its
effectiveness against the multi-level prompt. In detail, different from
multi-level prompt, single-level promptmerges the primaryQuestion
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Figure 4: Program size changes induced by each transformation on benchmarks of Benchmark-C. In each subplot, the left
box-plot and red dots represent how the size of each program changes before and after executing the transformation. The right
box-plot and blue dots represent the size change of each benchmark after executing the transformation and the follow-up
Perses reduction. There are a total of 20 benchmarks in Benchmark-C, and each experiment is repeated 5 times. Therefore, we
draw 100 data points on each boxplot.
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Figure 6: The number of benchmarks impacted by each trans-
formation within Benchmark-C.

and followupQuestion into a single prompt, e.g., “Given the follow-
ing program { PROGRAM }, identify one function that can be inlined,
and inline it.” for Function Inlining.

In 5 repeated experiments on Benchmark-C, the single-level
prompting approach results in 155.0 ± 8.7 tokens, which is far less
effective than results from the multi-level prompting approach, i.e.,
105.8±4.4 tokens. Our explanation is that, even though such a single-
level prompt is more compact, it makes LLMs less concentrated on
a specific target, and thus LLMs may omit some targets.

5.2 The Impact of Temperature
In our experiments, we consistently set the temperature param-
eter of LLMs to 1.0. To measure how this parameter affects the
performance, we rerun experiments under multiple temperatures,
i.e., 0.75, 0.5, 0.25, 0. Note that higher temperature instructs the
LLM to generate more creative and diverse results. Due to limited
resources and time, we evaluate on 10 benchmarks in Benchmark-C
that demonstrated the fastest completion times under the default
configuration.

Table 3: The impact of temperature.

Perses Vulcan LPR with gpt-3.5-turbo-0613
𝑡 = 1 𝑡 = 0.75 𝑡 = 0.5 𝑡 = 0.25 𝑡 = 0

Mean 161.4 102.8 73.2 ± 3.0 72.2 ± 5.0 69.5 ± 1.0 71.1 ± 5.9 90.3 ± 3.8

As shown in Table 3, the performances under most of the tem-
peratures are similar, while the exception is t=0, with the average
size worse than others. According to the documentation of tem-
perature [3], t=0 will actually use a small threshold above 0. Our
speculation is that a low temperature restrains the diversity of out-
puts, impeding LPR exploring local minima in different runs, which
is helpful in program reduction tasks.

Given that program reduction is an NP-complete problem, ran-
domness of LLMs has its advantages and drawbacks. Take the re-
sults of RQ1 in Table 1 as an example. On the one hand, randomness
allows LPR to explore more distinct local minima, and sometimes
generates smaller programs than C-Reduce in five repeated experi-
ments on each benchmark. On the other hand, randomness of LLMs
introduces variability. While the standard deviation remains below
10 in most benchmarks, it may significantly increase in certain
benchmarks, such as > 60 in GCC-59903. This variation can be
attributed to the high complexity of the given program. In such
scenarios, LLMs might not consistently execute accurate transfor-
mations, resulting in a range of local minima and divergent results.

5.3 Threats to Validity
In this section, we discuss potential factors that may undermine
the validity of our experimental results.
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5.3.1 Threats to Internal Validity. The main internal threat comes
from the potential data leakage problem. That is, do LLMs provide
reasonable transformation through step-by-step analysis, or just
simply memorize the minimal programs for the benchmark suites,
which may be publicly available on the internet?

We mitigate this threat from several perspectives. First, program
reduction is a task involving programs distinct from those used in
program repair or program synthesis tasks. For instance, LLMs can
learn from large datasets about code generation. On the contrary,
programs in program reduction tasks are generally large, complex,
and most importantly, randomly generated to trigger compiler
bugs, with no other specific purpose. Their random and chaotic
characteristics make it highly unlikely for LLMs to memorize such
disorganized content, thus reducing the risk of data leakage.

Second, we asked LLMs to verify whether they remember any
bug-triggering programs from public bug-tracking systems. For
instance, we ask LLMs “Do you know the minimal bug-triggering
program in GCC’s bugzilla, with id=66186?” and the results con-
firm that the LLMs do not retain the memory of these programs.
Moreover, even in scenarios where the LLMs might coincidentally
memorize certain minimal programs, it is improbable for it to link a
random-looking, featureless code snippet with a specific memorized
program, especially when no explicit bug ID is provided.

Furthermore, Benchmark-JS, one of the benchmark suites used,
was created using JIT fuzzing tools by the authors and is not publicly
accessible. This exclusivity ensures that the LLMs’ performance on
these benchmarks reflects their ability to handle unseen and novel
programs, thereby showcasing their effectiveness in managing new
challenges without relying on memorized data. This approach sig-
nificantly mitigates the risk of data leakage and demonstrates LLMs’
capacity for genuine problem-solving and analysis.

5.3.2 Threats to External Validity. One threat to external valid-
ity is the generality of LPR across languages. We evaluate LPR
on three prevalent programming languages, namely, C, Rust and
JavaScript. We believe these benchmark suites have demonstrated
LPR’s high generality on diverse programs. However, without fur-
ther experiments on a particular language, we still cannot ensure
the effectiveness and efficiency of LPR on that language.

An additional threat is the applicability of our approach across
different LLMs. To mitigate this threat, we repeat the experiments
with other versions of ChatGPT, i.e., gpt-3.5-turbo-1106 and gpt-
3.5-turbo-16k-0613. The experimental results show no significant
differences from results on gpt-3.5-turbo-0613. Furthermore, as
LLMs continue to evolve, we anticipate improvements in both qual-
ity and time of code processing.

6 RELATEDWORK
We introduce related work in two topics: program reduction and
LLMs for software engineering.

6.1 Program Reduction
DDMin [44] initiated the research topic of program reduction. It
treats the input as a list of elements, and consistently splits the
list into halves. Then it iteratively attempts to reduce the input list
by exploring subsets and their complements at varying levels of
granularity, transitioning from coarse to fine. Hierarchical Delta

Debugging [23], short for HDD, parses the program input into a
parsing tree, and performsDDMin on each level of the tree structure.
Perses [30] avoids the generation of syntactically invalid program
variants during reduction by formal syntax transformation. Vulcan,
further pushes the limit of Perses via identifier/sub-tree replacement
and local exhaustive search. All above works are not customized
for certain languages, though having high generality, they lack
semantic knowledge of a certain language for further reduction.

Besides, some tools are specifically designed for certain lan-
guages. C-Reduce [25], incorporating various transformation passes
for features in C, is the most effective reducer on this language.
J-Reduce [14, 15] is a tool for Java bytecode reduction, it reformu-
lates the bytecode reduction into dependency graph simplification.
ddSMT [24] is designed for reducing programs in SMT-LIBv2 for-
mat. All these works leverage language features to reduce more
effectively than language-generic tools.

Distinct from prior work, LPR synergistically combines LLMs
and language-generic reduction tool to harness the advantages
of both. Language-generic reducers stand out as their remarkable
generality across multiple languages, while LLMs excel in further
refining the programs with the domain knowledge on certain lan-
guages learned from large training sets. Language-specific tools
typically demand considerable human effort to design and imple-
ment feature-related transformations for reduction, while LPR re-
quires only a few lines of natural languages prompts, significantly
reducing the effort involved.

6.2 LLMs for Software Engineering
Large Language Models (LLMs) have proved their remarkable ca-
pability of undertaking multiple text-processing tasks, including
source code-related works. Recent works focus on applying LLMs to
facilitate software engineering tasks, or assessing the effectiveness,
potential and limitations of LLMs on software development and
maintenance. Some research [12, 39–41] focus on empirically ap-
plying LLMs on automatic program repair (APR). Huang et al. [12]
performed an empirical study on improvement brought by model
fine-tuning in APR. Xia et al. [40] thoroughly evaluated 9 state-of-
the-art LLMs across multiple datasets and programming languages,
and demonstrated that directly applying LLMs has already signif-
icantly outperformed all existing APR techniques. Additionally,
some works focus on LLMs’ performance w.r.t. code completion,
generation and fuzzing [5, 6, 20, 32, 46], by leveraging the code
analysis and generation ability of LLMs.

Similar to these studies, our approach LPR leverages LLMs for a
software engineering task, i.e., program reduction. LPR harnesses
the comprehension and generation capabilities of LLMs to refine
the results of program reduction. However, our work distinguishes
itself in the nature of the programs processed by LLMs. In related
research, programs are typically logical and goal-oriented, often
designed to fulfill a specific purpose. In contrast, the programs
involved in our program reduction task are random, chaotic, and
lack a clear objective. Consequently, our research sheds light on
the performance of LLMs when dealing with programs that do not
have an easily discernible purpose.
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7 CONCLUSION
This paper proposes LLMs-aided program reduction (LPR), which
is the first approach that leverages LLMs for the program reduction
task to the best of our knowledge. By combining the strength of
LLMs and existing language-generic program reduction techniques,
LPR can perform language-specific transformations to effectively
reduce the program while being language-generic (i.e., can be easily
applied to a wide range of languages). The evaluation shows that
in 50 benchmarks across three programming languages. LPR sig-
nificantly outperforms Vulcan. Specifically, LPR produces 24.93%,
4.47%, and 11.71% smaller programs on C, Rust, and JavaScript, re-
spectively. Meanwhile, The evaluation also demonstrates that LPR
complements Vulcan to some extent. By reducing the outputs of
LPRwith Vulcan, we attained results that have similar sizes to those
of C-Reduce in Benchmark-C. In terms of efficiency, LPR excels in
reducing complex programs, and takes 10.77%, 34.88%, 36.96% less
time than Vulcan to finish all the benchmarks, respectively.
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