
119

Recursive State Machine Guided Graph Folding for
Context-Free Language Reachability

YUXIANG LEI, University of New South Wales, Australia
YULEI SUI, University of New South Wales, Australia
SHIN HWEI TAN, Concordia University, Canada
QIRUN ZHANG, Georgia Institute of Technology, USA

Context-free language reachability (CFL-reachability) is a fundamental framework for program analysis. A
large variety of static analyses can be formulated as CFL-reachability problems, which determines whether
specific source-sink pairs in an edge-labeled graph are connected by a reachable path, i.e., a path whose
edge labels form a string accepted by the given CFL. Computing CFL-reachability is expensive. The fastest
algorithm exhibits a slightly subcubic time complexity with respect to the input graph size. Improving the
scalability of CFL-reachability is of practical interest, but reducing the time complexity is inherently difficult.

In this paper, we focus on improving the scalability of CFL-reachability from a more practical perspective—
reducing the input graph size. Our idea arises from the existence of trivial edges, i.e., edges that do not affect
any reachable path in CFL-reachability. We observe that two nodes joined by trivial edges can be folded—by
merging the two nodes with all the edges joining them removed—without affecting the CFL-reachability
result. By studying the characteristic of the recursive state machines (RSMs), an alternative form of CFLs,
we propose an approach to identify foldable node pairs without the need to verify the underlying reachable
paths (which is equivalent to solving the CFL-reachability problem). In particular, given a CFL-reachability
problem instance with an input graph 𝐺 and an RSM, based on the correspondence between paths in 𝐺 and
state transitions in RSM, we propose a graph folding principle, which can determine whether two adjacent
nodes are foldable by examining only their incoming and outgoing edges.

On top of the graph folding principle, we propose an efficient graph folding algorithm Gf. The time
complexity of Gf is linear with respect to the number of nodes in the input graph. Our evaluations on two
clients (alias analysis and value-flow analysis) show that Gf significantly accelerates RSM/CFL-reachability by
reducing the input graph size. On average, for value-flow analysis, Gf reduces 60.96% of nodes and 42.67% of
edges of the input graphs, obtaining a speedup of 4.65× and a memory usage reduction of 57.35%. For alias
analysis, Gf reduces 38.93% of nodes and 35.61% of edges of the input graphs, obtaining a speedup of 3.21×
and a memory usage reduction of 65.19%.

CCS Concepts: • Theory of computation→ Grammars and context-free languages.

Additional Key Words and Phrases: CFL-reachability, recursive state machines, graph simplification

ACM Reference Format:

Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang. 2023. Recursive State Machine Guided Graph Folding
for Context-Free Language Reachability. Proc. ACM Program. Lang. 7, PLDI, Article 119 (June 2023), 25 pages.
https://doi.org/10.1145/3591233

Authors’ addresses: Yuxiang Lei, yuxiang.lei@unsw.edu.au, University of New South Wales, Australia; Yulei Sui, y.sui@
unsw.edu.au, University of New South Wales, Australia; Shin Hwei Tan, shinhwei.tan@concordia.ca, Concordia University,
Canada; Qirun Zhang, qrzhang@gatech.edu, Georgia Institute of Technology, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART119
https://doi.org/10.1145/3591233

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.

https://doi.org/10.1145/3591233
https://doi.org/10.1145/3591233


119:2 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

1 INTRODUCTION
Context-free language reachability (CFL-reachability) [Reps 1998], also extensively studied in an
alternative form called recursive state machine reachability (RSM-reachability) [Alur et al. 2005a], is
a fundamental framework for program analysis. A large variety of static analyses, such as dataflow
analysis [Reps et al. 1995], polymorphic flow analysis [Rehof and Fähndrich 2001], typestate analysis
[Naeem and Lhoták 2008], code embedding [Sui et al. 2020] and point-to analysis [Zheng and
Rugina 2008] can be formulated as CFL-reachability problems, which determine whether specific
source-sink pairs in an edge-labeled graph can be connected by a path whose edge labels form a
string accepted by the given CFL.
Unfortunately, solving RSM-reachability is quite expensive. The standard algorithm [Melski

and Reps 2000; Reps et al. 1995] exhibits a cubic time complexity with respect to the input graph
size. Improving the time complexity of CFL-reachability is inherently difficult. Due to Chatterjee
et al. [2018], the truly subcubic 𝑂 (𝑛3−𝜖 ) bounds of CFL-reachability cannot be obtained without
obtaining 𝑂 (𝑛3−𝜖 )-time combinatorial algorithms for Boolean Matrix Multiplication [Williams and
Williams 2018]. In the literature, asymptotically faster algorithms are known only on restricted
context-free languages, i.e., bidirected Dyck-reachability [Chatterjee et al. 2018; Zhang et al. 2013].

Instead of reducing the (slightly) subcubic complexity, we focus on improving the scalability from
a more practical perspective—reducing the size of input graphs. In the context of CFL-reachability
(and its alternative forms such as set-constraint [Melski and Reps 2000]), several graph simplification
techniques have been proposed: (1) The most popular technique is cycle elimination [Fähndrich
et al. 1998; Hardekopf and Lin 2007a; Lei and Sui 2019; Pereira and Berlin 2009]. However, there
is no general cycle elimination algorithm for CFL-reachability because whether a cycle can be
collapsed depends on the context-free grammar (CFG). Moreover, our empirical results (Section 6)
show that there are still a large number of collapsible nodes and edges, which do not reside in
cycles; (2) Recently, a graph simplification algorithm [Li et al. 2020] was proposed to remove
particular “non-Dyck-contributing” parenthesis-labeled edges for problems where the underlying
CFL over-approximates the intersection of multiple Dyck languages (i.e., the InterDyck language).
Nevertheless, there are a variety of problems where the parenthesis-labeled edges do not dominate
[Naeem and Lhoták 2008; Sui and Xue 2016a; Zheng and Rugina 2008], whereby the effectiveness of
the InterDyck graph simplification algorithm compromises; and (3) Edge contraction for particular
clients has also been studied. The best-known method is the offline variable substitution for pointer
analysis [Rountev and Chandra 2000], a special case of the more general graph folding problem.

In this paper, we introduce a novel graph folding technique for CFL-reachability. The graph folding
technique extends the applicability of edge contraction from the special case [Rountev and Chandra
2000] to general CFL-reachability. The foldability of CFL-reachability originates from the existence
of trivial edges. If two nodes are joined by trivial edges, they can be folded—by merging the two
nodes and removing all the edges joining them—without affecting the CFL-reachability result.

The challenge lies in identifying foldable node pairs. Intuitively, we can identify the foldable node
pairs by determining all reachable paths. However, this is equivalent to solving CFL-reachability
and obviously defeats the purpose of improving scalability. In this paper, we utilize an equivalent
form of CFLs called recursive state machines (RSMs) and address the challenge for problems where
the CFLs can be expressed as deterministic RSMs. In deterministic RSMs, each target state can
be uniquely determined by the source state and the transition label. Therefore, our key technical
insight is to study the correspondence between paths in graphs and state transition chains in
deterministic RSMs, and refine the criteria for foldable node pairs. In particular, we consider a node
pair (𝑥,𝑦) as foldable if the corresponding RSM transitions of each path in the graph are consistent
before and after folding (𝑥,𝑦). By further exploiting the dependency of RSM state transitions, we

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:3

introduce a graph folding principle for deterministic RSMs, which can identify foldable node pairs
by examining only their incoming and outgoing edges in the input graph.
On top of the graph folding principle, we propose a graph-folding algorithm Gf, which has

a linear time complexity with respect to the number of nodes in the input graph. Gf enables a
general preprocessing step for CFL/RSM-reachability where the RSM is deterministic. Deterministic
RSMs cover a large variety of languages extensively used in program analysis, including visibly
pushdown languages [Alur and Madhusudan 2004], Dyck languages [Kodumal and Aiken 2004],
and all regular languages. By reducing the input graph size, graph folding significantly improves
the scalability of CFL-reachability in terms of both time and space.

We have implemented Gf and applied it to a context-sensitive value-flow analysis [Sui and Xue
2018; Sui et al. 2014], and a field-sensitive alias analysis [Zheng and Rugina 2008]. We have exten-
sively evaluated it using benchmarks of ten popular GitHub projects in C/C++. Our experimental
results show that Gf can significantly reduce the graph sizes for the two client analyses. In general,
by reducing 60.96% nodes and 42.67% edges of the input graphs, Gf accelerates context-sensitive
value-flow analysis by 4.65×with a memory reduction rate of 57.35%; by reducing 38.93% nodes and
35.61% edges, Gf accelerates field-sensitive alias analysis by 3.21× with a memory reduction rate of
65.19%. The performance of Gf in both clients surpasses existing graph simplification techniques [Li
et al. 2020; Nuutila and Soisalon-Soininen 1994].

This paper makes the following contributions:

(1) We introduce a new perspective that utilizes deterministic RSMs to simplify the input graphs
of CFL-reachability.

(2) For deterministic CFL- and RSM-reachability, we propose a graph folding principle that
identifies foldable node pairs by examining only their incoming and outgoing edges in the
input graph.

(3) We propose an efficient graph-folding algorithm Gf, whose time complexity is linear with
respect to the number of nodes of the input graph.

(4) We apply Gf to a context-sensitive value-flow analysis and a field-sensitive alias analysis on
ten open-source C/C++ programs. The results demonstrate that graph folding significantly
reduces running time and memory overhead by reducing the input graph size.

The remainder of this paper is organized as follows: Section 2 presents a motivating example.
Section 3 introduces the background and formulates graph folding. Section 4 studies the criteria for
foldable node pairs. Section 5 proposes our graph-folding algorithm Gf, followed by experiments
in Section 6, and related work and conclusion in Sections 7 and 8, respectively.

2 MOTIVATING EXAMPLE
This section motivates graph folding for CFL-reachability, describing the benefits and challenges.
Figure 1(a) shows a CFG of a Dyck language variant and its corresponding RSM. Let 𝑆 be the start
symbol of the CFG in Figure 1(a). This grammar generates a Dyck language of matched parentheses
“L ” and “ M” with an arbitrary number of “𝑎”s. Dyck languages are widely used in context-sensitive
program analyses [Hao et al. 2015; Heine and Lam 2003; Reps et al. 1995; Zhang and Su 2017]. In
this motivating example, we focus on the reachability problem that identifies 𝑆-reachable node
pairs starting with 𝑣0 and 𝑣1. Figure 1(b) gives the input graph 𝐺 . In 𝐺 , there are four 𝑆-reachable
node pairs (𝑣0, 𝑣7), (𝑣1, 𝑣5), (𝑣1, 𝑣6) and (𝑣1, 𝑣7). Figure 1(c) gives the details of the 𝑆-reachable node
pairs and the corresponding 𝑆-paths, where the column “String” contains the corresponding path
strings. Note that there is no cycle in𝐺 , and removing any parenthesis-labeled edge changes the
CFL-reachability solution. Hence, neither cycle elimination [Nuutila and Soisalon-Soininen 1994]
nor InterDyck graph simplification [Li et al. 2020] can simply 𝐺 in this example.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:4 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

CFG: 𝑆 = L 𝑆 M | 𝑆 𝑆 | 𝑎∗

M1

b1:M1

a
RSM:

(a) A context-free grammar and its equiva-
lent recursive state machine.

a a

a

a

a

G G'

fold

(b) Original input graph 𝐺 and the transformed graph
𝐺 ′ via graph folding.

Solution Reachable path String

(𝑣0, 𝑣7) 𝑣0
L
−→𝑣1

L
−→𝑣2

𝑎−→𝑣3
M
−→𝑣5

M
−→𝑣7 L L𝑎 M M

(𝑣1, 𝑣5) 𝑣1
L
−→ 𝑣2

𝑎−→ 𝑣3
M
−→ 𝑣5 L 𝑎 M

(𝑣1, 𝑣6) 𝑣1
L
−→ 𝑣2

𝑎−→ 𝑣3
M
−→ 𝑣5

𝑎−→ 𝑣6 L 𝑎 M𝑎

(𝑣1, 𝑣7) 𝑣1
L
−→ 𝑣2

𝑎−→ 𝑣4
𝑎−→ 𝑣5

M
−→ 𝑣7 L 𝑎𝑎 M

Solution Reachable path String

(𝑣0, 𝑣7) 𝑣0
L
−→ 𝑣1

L
−→ 𝑣 ′2

M
−→ 𝑣 ′5

M
−→ 𝑣7 L L M M

(𝑣1, 𝑣 ′5) 𝑣1
L
−→ 𝑣 ′2

M
−→ 𝑣 ′5 L M

(𝑣1, 𝑣7) 𝑣1
L
−→ 𝑣 ′2

𝑎−→ 𝑣 ′5
M
−→ 𝑣7 L 𝑎 M

(c) Reachability solutions in 𝐺 . (d) Reachability solutions in 𝐺 ′.

Fig. 1. Motivating example for graph folding.

Graph Folding. Graph folding reduces the graph size bymerging adjacent node pairs and removing
the corresponding edges. Most importantly, it does not affect the original reachability result.
Figure 1(b) gives the folded graph 𝐺 ′ from 𝐺 . Specifically, the node pair (𝑣2, 𝑣3) is folded into a
representative node 𝑣 ′2 with 𝑣2

𝑎−→ 𝑣3 removed. Likewise, (𝑣2, 𝑣4) and (𝑣5, 𝑣6) are folded into 𝑣 ′2 and
𝑣 ′5, respectively. Figure 1(d) gives the reachability result on 𝐺 ′. Notably, 𝑣 ′5 in 𝐺

′ represents nodes
𝑣5 and 𝑣6 in 𝐺 . By expanding 𝑣 ′5 in (𝑣1, 𝑣 ′5) back into 𝑣5 and 𝑣6, we get two 𝑆-reachable pairs (𝑣1, 𝑣5)
and (𝑣1, 𝑣6). As a result, the reachability results from 𝐺 ′ and 𝐺 are the same. Hence, graph folding
can reduce the size of 𝐺 while maintaining the correctness of the solution.

Benefits. Proper preprocessing that shrinks the input graph can significantly reduce the computa-
tion overhead for CFL-reachability. Given a graph 𝐺 , standard CFL-reachability algorithm [Melski
and Reps 2000] takes cubic time with respect to the number of nodes in 𝐺 . Specifically, in Figure
1(b), there are eight nodes and eight edges in the original graph 𝐺 . Assume that each iteration
inserts a summary edge into the graph. Then, performing the standard CFL-reachability algorithm
upon 𝐺 costs 23 iterations. In contrast, there are only five nodes and five edges in the folded
graph 𝐺 ′, which only costs 13 iterations to obtain the result. By reducing the graph size, graph
folding can reduce 43.48% of iterations. Moreover, our graph-folding algorithm Gf has a linear time
complexity with respect to the number of nodes in the graph, which is asymptotically faster than
any CFL-reachability algorithm. Specifically, Gf folds the graph𝐺 in the motivating example in
eight iterations. Even if we take Gf running time into account, the overall computation overhead is
smaller than that without any preprocessing.

Challenge. Identifying foldable node pairs is the main technical challenge of graph folding.
From the motivating example in Figure 1, we can see that we cannot fold arbitrary node pairs

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:5

in 𝐺 . Consider the node pair (𝑣3, 𝑣5). If we fold the pair into a representative node 𝑣 ′3, the path

𝑣1
L
−→ 𝑣2

𝑎−→ 𝑣3
M
−→ 𝑣5 changes to 𝑣1

L
−→ 𝑣2

𝑎−→ 𝑣 ′3, where 𝑣
′
3 represents {𝑣3, 𝑣5}. Unfortunately, after

this folding, the reachable pair (𝑣1, 𝑣5) is missing, and cannot be retrieved from the result by
expanding 𝑣 ′3 into 𝑣3 and 𝑣5. This makes the analysis unsound. In fact, it is difficult to identify all
the foldable node pairs unless we identify all reachable paths first. Our key insight is to exploit
the correspondence between paths in the graph and state transitions in the RSM and identify
the majority of foldable node pairs. Section 4 details how to address this challenge based on the
characteristics of deterministic RSMs.

3 PROBLEM FORMULATION
Context-free languages can be described using recursive state machines (RSMs) and pushdown
automata (PDA). We describe graph folding in the context of RSM-reachability [Alur et al. 2005a;
Chaudhuri 2008]. RSMs model stack push/pop operations in PDA using call/return state transitions.
When discussing graph reachability, this makes the correspondence between paths in the graph
and transition chains in RSMs more intuitive. For instance, a labeled edge 𝑣1

𝑡−→ 𝑣2 in the input
graph can be directly mapped to a state transition 𝑠1

𝑡−→ 𝑠2 in the RSM, where 𝑠1 and 𝑠2 are two RSM
states. This section introduces the preliminaries and formulates the problem.

3.1 Recursive State Machines
A recursive state machine (RSM) [Alur et al. 2005a] over a finite alphabet Σ is defined as a tuple
R = ⟨𝑀1, · · · , 𝑀𝑡 ⟩ comprised of 𝑡 component finite state machines, where each component 𝑀𝑖 =

⟨𝑁𝑖 , 𝐵𝑖 , 𝑌𝑖 , En𝑖 , Ex𝑖 , 𝛿𝑖⟩ is a finite state machine consisting of the following:

𝑁𝑖 – a finite set of local states.
𝐵𝑖 – a finite set of boxes in𝑀𝑖 , with each of which mapped to a component state machine.
𝑌𝑖 : 𝐵𝑖 ↦→ {1, · · · , 𝑡} – a mapping function assigning each box of𝑀𝑖 an index of one of the

components𝑀1, · · · , 𝑀𝑡 .
En𝑖 ⊆ 𝑁𝑖 – a set holding the entries of𝑀𝑖 .
Ex𝑖 ⊆ 𝑁𝑖 – a set holding the exits of𝑀𝑖 .
𝛿𝑖 :

(
𝑁𝑖 ∪

⋃
𝑏∈𝐵𝑖

Ex𝑌𝑖 (𝑏)
)
×Σ ↦→ 𝑁𝑖 ∪

⋃
𝑏∈𝐵𝑖

En𝑌𝑖 (𝑏) – a local transition function that maps specific

states and labels to specific target states.

Specifically, for a local transition in 𝛿𝑖 , denoted by 𝑛𝑖1
ℓ−→ 𝑛𝑖2 , (1) the source 𝑛𝑖1 must be either a

local state or an exit of a box belonging in𝑀𝑖 , (2) the label ℓ is an element of Σ, and (3) the target
𝑛𝑖2 must be either a local state or an entry of a box in𝑀𝑖 .

Example 3.1. Figure 1(a) gives an example RSM over an alphabet Σ = {L , 𝑎, M}. There is only
one component𝑀1 calling itself recursively.𝑀1 is comprised of: (1) a local state 𝑛1, which is also
the entry and the exit of 𝑀1; (2) a box 𝑏1 which is mapped to 𝑀1; and (3) three transition rules

𝑛1
L
−→ ⟨𝑏1, 𝑛1⟩, 𝑛1

𝑎−→ 𝑛1 and ⟨𝑏1, 𝑛1⟩
M
−→ 𝑛1 where ⟨𝑏1, 𝑛1⟩ denotes the entry (also the exit) of the

box 𝑏1, as the labeled edges in Figure 1(a).

The semantics of RSM is given by global states and transitions:

Global states. A global state 𝑠 ∈ 𝑆 , where 𝑆 = 𝐵∗ × 𝑁 , 𝐵 =
⋃

𝑖 𝐵𝑖 , 𝑁 =
⋃

𝑖 𝑁𝑖 , can be viewed as a
local state nested in layers of boxes. Consider a sequence of boxes 𝑏1, · · · , 𝑏𝑘 such that 𝑏𝑖 ∈ 𝐵 𝑗𝑖 and
𝐵 𝑗𝑖 , 𝐵 𝑗𝑖+1 ∈ 𝐵 for all 𝑖 ∈ {1, · · · , 𝑘}. A global state 𝑠 = ⟨𝑏1, · · · , 𝑏𝑘 , 𝑛⟩ follows (1) 𝑌𝑗𝑖 (𝑏𝑖 ) = 𝑗𝑖+1 for all
𝑖 ∈ {1, · · · , 𝑘}, i.e., 𝑏𝑖+1 is nested in 𝑏𝑖 , and (2) 𝑛 ∈ 𝑁 𝑗𝑘+1 , i.e., 𝑛 is nested in 𝑏𝑘 . Intuitively, a global

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:6 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

state denotes the current position of the initial state (usually not nested in any box) after a series of
transitions, including entering/exiting boxes.

Global transitions Δ. The global transition function Δ : 𝑆 × Σ ↦→ 𝑆 maps specific global states
and labels to specific target global states. A global transition rule is denoted by 𝑠1

ℓ−→ 𝑠2 ∈ Δ,
where 𝑠1, 𝑠2 ∈ 𝑆 and ℓ ∈ Σ. Global transitions are restricted by the local transition rules. Given two
global states 𝑠1, 𝑠2 ∈ 𝑆 and 𝑠1 = ⟨𝑏1, · · · , 𝑏𝑘−1, 𝑏𝑘 , 𝑛1⟩ where 𝑏𝑘 ∈ 𝐵 𝑗𝑘 , 𝑌𝑗𝑘 (𝑏𝑘 ) = 𝑗𝑘+1 and 𝑛1 ∈ 𝑁 𝑗𝑘+1 ,
𝑠1

ℓ−→ 𝑠2 ∈ 𝑅 iff one of the following four situations holds:

(1) Location transition: 𝑠2 = ⟨𝑏1, · · · , 𝑏𝑘−1, 𝑏𝑘 , 𝑛2⟩ and 𝑛1
ℓ−→ 𝑛2 ∈ 𝛿 𝑗𝑘+1 ;

(2) Entering a box: 𝑠2 = ⟨𝑏1, · · · , 𝑏𝑘−1, 𝑏𝑘 , 𝑏𝑘+1, 𝑛2⟩, 𝑏𝑘+1 ∈ 𝐵𝑘+1, 𝑛2 ∈ En𝑌𝑗𝑘+1 (𝑏𝑘+1) and 𝑛1
ℓ−→

⟨𝑏𝑘+1, 𝑛2⟩ ∈ 𝛿 𝑗𝑘+1 ;
(3) Existing from a box: 𝑠2 = ⟨𝑏1, · · · , 𝑏𝑘−1, 𝑛2⟩, 𝑛1 ∈ Ex𝑗𝑘+1 and ⟨𝑏𝑘 , 𝑛1⟩

ℓ−→ 𝑛2 ∈ 𝛿 𝑗𝑘 ;
(4) Transiting across two boxes: 𝑠2 = ⟨𝑏1, · · · , 𝑏𝑘−1, 𝑏 ′𝑘 , 𝑛2⟩, 𝑛1 ∈ Ex𝑗𝑘+1 , 𝑏 ′𝑘 ∈ 𝐵 𝑗𝑘 , 𝑛2 ∈ En𝑌𝑗𝑘

(𝑏′
𝑘
)

and ⟨𝑏𝑘 , 𝑛1⟩
ℓ−→ ⟨𝑏 ′

𝑘
, 𝑛2⟩ ∈ 𝛿 𝑗𝑘 .

Property 3.1 (Dependency of Global Transitions on Local Transitions). A global transition can only
change the innermost box (by entering/exiting) and the innermost local state (by the local transition
function of the component state machine, to which the innermost box maps) of a global state.

For brevity, we refer to all the states and transitions as the global ones unless otherwise specified.

Deterministic RSMs. In a deterministic RSM 𝑅, given a state 𝑠𝑖 and a label 𝑡 , if ∃𝑠𝑖
ℓ−→ 𝑠 𝑗 ∈ 𝑅, 𝑠 𝑗 is

unique. In other words, for the transition function of a deterministic RSM, when the input state
and label are specified, we can always determine the output state. In the remaining sections, all
demonstrations and conclusions are based on deterministic RSMs.
Transition Chains. In an RSM 𝑅, a transition chain 𝑝𝑅 ∈ 𝑅 from a source state 𝑠0 to a target

state 𝑠𝑘 is a sequence of global transitions 𝑠0
ℓ1−→ 𝑠1

ℓ2−→ · · · ℓ𝑘−→ 𝑠𝑘 such that 𝑠𝑖−1
ℓ𝑖−→ 𝑠𝑖 ∈ Δ for all

𝑖 ∈ {1, · · · , 𝑘}. In a deterministic RSM, given a source state 𝑠0 and a sequence of label ℓ1, · · · , ℓ𝑘 , the
transition chain 𝑠0

ℓ1−→ 𝑠1
ℓ2−→ · · · ℓ𝑘−→ 𝑠𝑘 ∈ 𝑅 is unique if it exists.

Acceptable Strings. Given an RSM 𝑅 with a specified initial state 𝑠init ∈ 𝑆 and a set of accepting
states 𝐹 ⊆ 𝑆 , a string𝑤 ∈ Σ∗ is accepted by 𝑅 iff it takes a transition chain from the initial state to
one of the accepting states, i.e., ∃ 𝑠init

ℓ1−→ · · · ℓ𝑘−→ 𝑠𝑘 ∈ 𝑅 such that 𝑠𝑘 ∈ 𝐹 and ℓ1 · · · ℓ𝑘 = 𝑤 .

3.2 RSM-Reachability
Given a source-sink node pair, RSM-reachability is to check whether the sink is reachable from the
source by a path whose edge labels form, in sequence, an acceptable string of the RSM.

Reachable Paths and Pairs. Given an RSM-reachability instance Reach⟨𝑅,𝐺⟩ where 𝑅 is an RSM
and𝐺 = ⟨𝑉 , 𝐸⟩ is an edge-labeled directed graph, a path 𝑝𝐺 = 𝑣𝑖

ℓ1−→ · · · ℓ𝑘−→ 𝑣 𝑗 ∈ 𝐺 is a reachable path
iff the sequence of the edge labels ℓ1 · · · ℓ𝑘 forms an acceptable string of 𝑅. In an RSM-reachability
instance, a reachable pair (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑉 × 𝑉 is a node pair in 𝐺 such that there exists at least one
reachable path from 𝑣𝑖 to 𝑣 𝑗 .

RSM-reachability. Formally, given an RSM 𝑅 with a specified initial state and accepting states
and a graph 𝐺 with specified sources 𝑉src ⊆ 𝑉 and sinks 𝑉snk ⊆ 𝑉 , an RSM-reachability problem
aims to determine for each source-sink pair (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑉src ×𝑉snk whether it is a reachable pair.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:7

Example 3.2. We formulate the motivating example (Figure 1) as an RSM-reachability problem.
In this instance, 𝑅 = ⟨𝑀1⟩, 𝑠init = ⟨𝑛1⟩, F = {⟨𝑛1⟩}, 𝑉src = {𝑣0, 𝑣1}, 𝑉snk = {𝑣0, · · · , 𝑣7}. For the path
𝑣1

L
−→ 𝑣2

𝑎−→ 𝑣3
M
−→ 𝑣5 ∈ 𝐺 , the sequence of edge labels forms a string “L 𝑎 M” which is accepted by 𝑅

because there is a transition chain ⟨𝑛1⟩
L
−→ ⟨𝑏1, 𝑛1⟩

𝑎−→ ⟨𝑏1, 𝑛1⟩
M
−→ ⟨𝑛1⟩ ∈ 𝑅. Therefore, (𝑣1, 𝑣5) is a

reachable pair. Similarly, (𝑣0, 𝑣7), (𝑣1, 𝑣6) and (𝑣1, 𝑣7) are also reachable pairs.

3.3 Graph Folding
Given a directed graph𝐺 and two adjacent nodes (𝑥,𝑦) ∈ 𝑉 ×𝑉 , an 𝑥𝑦-folded graph𝐺 ′ is constructed
by removing all the edges joining 𝑥 and 𝑦 and collapsing (𝑥,𝑦) into a representative node 𝑧 such
that Rep(𝑥) = Rep(𝑦) = 𝑧. In particular, for a node 𝑣𝑖 ∈ 𝑉 , if 𝑣𝑖 is merged into another node 𝑧,
Rep(𝑣𝑖 ) = 𝑧, otherwise, Rep(𝑣𝑖 ) = 𝑣𝑖 .

Intuitively, an ideal graph folding approach should fold as many node pairs as possible. However,
arbitrarily folding node pairs can change reachable pairs due to removals or additions of graph
edges, resulting in an incorrect RSM-reachability solution. A correct graph folding approach
must guarantee the equivalence of reachable pairs in the original graph and the folded graph
(Definition 3.1).

Definition 3.1 (Reachability Equivalence). Let 𝐺 = ⟨𝑉 , 𝐸⟩ be the original graph with 𝑉src and
𝑉snk specified, and let 𝐺 ′ = ⟨𝑉 ′, 𝐸 ′⟩ be the folded graph, 𝐺 and 𝐺 ′ are reachability equivalent iff
∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑉src ×𝑉snk, 𝑣 𝑗 is reachable from 𝑣𝑖 in 𝐺 iff Rep(𝑣 𝑗 ) is reachable from Rep(𝑣𝑖 ) in 𝐺 ′.

Definition 3.1 implies that a correct graph folding preserves the information of all the original
reachable pairs. In other words, two graphs being reachability equivalent yields equivalent RSM-
reachability solutions. If folding a node pair (𝑥,𝑦) preserves reachability equivalence, we say that
(𝑥,𝑦) is foldable.

Example 3.3. Let us revisit the motivating example in Figure 1(b). After folding the node pair

(𝑣2, 𝑣3) ∈ 𝐺 into 𝑣 ′2 ∈ 𝐺 ′, the reachable path 𝑣1
L
−→ 𝑣2

𝑎−→ 𝑣3
M
−→ 𝑣5 becomes 𝑣1

L
−→ 𝑣 ′2

M
−→ 𝑣5,

whose edge labels also form an acceptable string of the RSM. Thus, the reachable pair (𝑣1, 𝑣5) is
preserved after the folding. It can be computed that other reachable pairs in the original graph are
also preserved. Therefore, (𝑣2, 𝑣3) is foldable. In contrary, (𝑣3, 𝑣5) is not foldable. If we were to fold

(𝑣3, 𝑣5) into 𝑣 ′3, the path 𝑣1
L
−→ 𝑣2

𝑎−→ 𝑣3
M
−→ 𝑣5 would become 𝑣1

L
−→ 𝑣2

𝑎−→ 𝑣 ′3 where 𝑣
′
3 represents 𝑣3

and 𝑣5, which is no longer a reachable path. Moreover, as there is no other reachable path from 𝑣1
to 𝑣 ′3 in the folded graph, (𝑣1, 𝑣 ′3) is not a reachable pair, indicating that the original reachable pair
(𝑣1, 𝑣5) in 𝐺 is lost in the folded graph.

Finally, we formulate our graph folding problem as follows.

Given an RSM-reachability instance Reach⟨𝑅,𝐺⟩, generate a smaller graph𝐺 ′ by folding node
pairs in 𝐺 and guarantee that 𝐺 and 𝐺 ′ are reachability equivalent.

4 PRINCIPLE FOR GRAPH FOLDING
Identifying foldable node pairs based on Definition 3.1 requires computing all reachable paths in
the original graph 𝐺 and the folded graph𝐺 ′, which contradicts the goal of improving scalability
for RSM-reachability. In this section, we study the correspondence between nodes in the graph
and states in the RSM. Specifically, we show that when folding a node pair (𝑥,𝑦), whether reach-
ability equivalence is preserved can be determined by at most two transitions, starting with the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:8 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

G: 

G': 

2v

 

2v

 

＿

 

仓一

2
0
七

y

乌
扲

8上

今尤A-

vl

1

 

v

 

(a) When 𝑥 and 𝑦 are joined by only one edge,
each path passing through 𝑥 and 𝑦 is folded into
a distinct path after folding (𝑥,𝑦).

(b) When 𝑥 and 𝑦 are joined by multiple edges,
there are multiple paths folded into the same path
after folding (𝑥,𝑦).

Fig. 2. Correspondence between paths before and after folding. Without loss of generality, we assume that 𝑦

in 𝐺 is merged into 𝑥 in the 𝑥𝑦-folded graph 𝐺 ′
.

corresponding states of 𝑥 and 𝑦 and going through the edge labels involving 𝑥 and 𝑦. We formulate
our folding principle by overapproximating the corresponding states of 𝑥 and 𝑦 and exploiting
RSM properties, i.e., the subsumption and equivalence relations of states. Thus, we can efficiently
identify whether a node pair is foldable by examining only its incoming and outgoing edges.

4.1 Correspondence between Graph Folding and RSM-Reachability
Folding-Equivalent Class and Criteria for Reachability Equivalence. Consider Figure 2(a). The path

𝑝𝐺′ is obtained from 𝑝𝐺 by folding (𝑥,𝑦), i.e., contracting the edge 𝑥
ℓ𝑥𝑦−−→ 𝑦. In fact, the input graph

in RSM-reachability can be a multigraph, meaning that there can be multiple edges between 𝑥 and
𝑦, as shown in Figure 2(b). As folding (𝑥,𝑦) removes all the edges joining 𝑥 and 𝑦, there can be
multiple original paths folded into the same 𝑥𝑦-folded path. Such paths in the original graph 𝐺

constitute folding-equivalent classes based on their endpoints:

Definition 4.1 (𝑥𝑦-Folding-Equivalent Classes). Two paths 𝑝1, 𝑝2 ∈ 𝐺 are in the 𝑥𝑦-folding-
equivalent (𝑥𝑦-FEQ) class 𝑷𝑥𝑦 iff they have identical endpoints and are folded into the same
path 𝑝 ′ in the 𝑥𝑦-folded graph 𝐺 ′. A path is 𝑥𝑦-FEQ to itself.

In Figure 2(b), all the paths starting with 𝑣1 and ending with 𝑣2 are in the 𝑥𝑦-FEQ class. Based
on 𝑥𝑦-folded paths and their corresponding 𝑥𝑦-FEQ classes, we state sufficient conditions for
graph folding that can guarantee reachability equivalence in Definition 4.2. Note that our sufficient
conditions do not rely on obtaining all reachable node pairs.

Definition 4.2 (Sufficient Conditions for Reachability Equivalence). An 𝑥𝑦-folded graph 𝐺 ′ is
reachability equivalent to its original graph 𝐺 if the following conditions are satisfied:
Cond. 1. Exclusiveness: Each source-sink path in 𝐺 ′ has a corresponding 𝑥𝑦-FEQ class in 𝐺 .
Cond. 2. Consistency: For each 𝑥𝑦-FEQ class 𝑷𝑥𝑦 in 𝐺 , its corresponding 𝑥𝑦-folded path in 𝐺 ′ is a

reachable path iff 𝑷𝑥𝑦 contains a reachable path in 𝐺 .

Satisfying the exclusiveness condition (Cond. 1) is straightforward. For example, we can avoid
introducing extra source-sink paths to𝐺 ′ by not merging (𝑥,𝑦) when (1) there is no edge from 𝑦 to
𝑥 and (2) 𝑦 is a source or 𝑦 has incoming edges not from 𝑥 . To satisfy the consistency condition
(Cond. 2), we need to check the corresponding transition chains of reachable paths.

Corresponding Transition Chains and Corresponding States. As discussed in Section 3.1, given a
specific initial state 𝑠init and a string of labels ℓ1 · · · ℓ𝑘 , a deterministic RSM has at most one transition
chain from 𝑠init, through ℓ1 · · · ℓ𝑘 , to a deterministic target state 𝑠𝑘 . Notably, the corresponding
transition chain is defined below:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:9

Before folding (𝑥, 𝑦)

𝑝𝐺 ∈ 𝐺 : 𝑣0
ℓ0−→ · · · ℓ1−→ 𝑥

ℓ𝑥𝑦
−−−→ 𝑦

ℓ2−→ 𝑣2
ℓ3−→ · · · ℓ𝑘−−→ 𝑣𝑘

𝑝𝑅 ∈ 𝑅 : 𝑠init
ℓ0−→ · · · ℓ1−→ 𝑠𝑥

ℓ𝑥𝑦
−−−→ 𝑠𝑦

ℓ2−→ 𝑠2
ℓ3−→ · · · ℓ𝑘−−→ 𝑠𝑘

(a) A path 𝑝𝐺 in 𝐺 and its corresponding transition chain 𝑝𝑅 in the RSM 𝑅.

After folding (𝑥, 𝑦)

𝑝𝐺′ ∈ 𝐺 ′ : 𝑣0
ℓ0−→ · · · ℓ1−→ 𝑥

ℓ2−→ 𝑣2
ℓ3−→ · · · ℓ𝑘−−→ 𝑣𝑘

𝑝 ′
𝑅
∈ 𝑅 : 𝑠init

ℓ0−→ · · · ℓ1−→ 𝑠𝑥
ℓ2−→ 𝑠 ′2

ℓ3−→ · · · ℓ𝑘−−→ 𝑠 ′
𝑘

(b) The 𝑥𝑦-folded path 𝑝𝐺′ of 𝑝𝐺 and its corresponding transition chain 𝑝 ′
𝑅
.

Fig. 3. A path 𝑝𝐺 and its corresponding transition chain 𝑝𝑅 before and after folding (𝑥,𝑦). Without loss of

generality, we assume that 𝑦 is merged into 𝑥 in the 𝑥𝑦-folded graph.

Definition 4.3 (Corresponding Transition Chain). Given an RSM-reachability instance Reach⟨𝑅,𝐺⟩
where 𝑅 is deterministic, consider a path 𝑝𝐺 = 𝑣0

ℓ1−→ · · · ℓ𝑘−→ 𝑣𝑘 ∈ 𝐺 where ℓ1 · · · ℓ𝑘 forms a string
𝑤 ∈ Σ𝑘 . If there exists 𝑝𝑅 = 𝑠init

ℓ1−→ · · · ℓ𝑘−→ 𝑠𝑘 ∈ 𝑅 such that ℓ1 · · · ℓ𝑘 = 𝑤 , we say that 𝑝𝑅 is the
corresponding transition chain of 𝑝𝐺 . As 𝑝𝑅 , if it exists, is unique in the deterministic RSM 𝑅, a
path 𝑝𝐺 ∈ 𝐺 has zero or one corresponding transition chain.

Figure 3(a) shows a path 𝑝𝐺 and its corresponding transition chain 𝑝𝑅 . Similarly, Figure 3(b)
depicts an 𝑥𝑦-folded path 𝑝𝐺′ ∈ 𝐺 ′ which has zero or one corresponding transition chain 𝑝 ′

𝑅
∈ 𝑅.

As depicted in Figure 3(a), with respect to the corresponding transition chain, each node 𝑣𝑖 of a
path 𝑝𝐺 ∈ 𝐺 is mapped to exactly one state 𝑠𝑖 in the RSM. We call 𝑠𝑖 the corresponding state of
𝑣𝑖 in 𝑝𝐺 . In a graph, a node 𝑣𝑖 may belong to multiple paths corresponding to different transition
chains, leading to the notion of corresponding states:

Definition 4.4 (Corresponding States). For a node 𝑣𝑖 ∈ 𝑉 , its corresponding state 𝑄𝑣𝑖 ⊆ 𝑆 is a set
that holds the target states of all the corresponding transition chains of paths ending at 𝑣𝑖 . Taking
empty paths into consideration, we have 𝑠init ∈ 𝑄𝑣𝑖 .

Note that a path 𝑝𝐺 ∈ 𝐺 can be a subpath of other paths, which means that 𝑝𝐺 can also correspond
to one or more sub-transition chains that do not start with 𝑠init. Nevertheless, the starting states of
the sub-transition chains must belong to 𝑄𝑣𝑖 .

Remark (Sub-Transition Chain). For a path 𝑝𝐺 starting with a node 𝑣𝑖 and being a subpath of other
paths in 𝐺 , each corresponding sub-transition chain of 𝑝𝐺 must start with a state belonging to 𝑄𝑣𝑖 .

Example 4.1 (Corresponding States and Reachability Equivalence). Consider an instance in Figure 3
where 𝑣2, · · · , 𝑣𝑘 do not contain any of 𝑥 or 𝑦. According to Definition 4.4, 𝑠𝑥 ∈ 𝑄𝑥 . By comparing

Figures 3(a) and 3(b), we can see that 𝑠2 is obtained from 𝑠𝑥 by two transitions 𝑠𝑥
ℓ𝑥𝑦−−→ 𝑠𝑦

ℓ2−→ 𝑠2,

while 𝑠 ′2 is obtained from 𝑠𝑥 by one transition 𝑠𝑥
ℓ2−→ 𝑠 ′2. If 𝑠2 = 𝑠 ′2, then 𝑠𝑘 = 𝑠 ′

𝑘
because the sequence

of edge labels ℓ2, ℓ3, · · · , ℓ𝑘 is not changed after folding (𝑥,𝑦). Moreover, if for any 𝑠𝑥 ∈ 𝑄𝑥 , 𝑠2 = 𝑠 ′2,
then for any 𝑝𝐺 (Figure 3(a)) and its 𝑥𝑦-folded 𝑝𝐺′ (Figure 3(b)), their corresponding transition

chains end at the same state. This means that folding (𝑥,𝑦) keeps the paths passing through 𝑥
ℓ𝑥𝑦−−→ 𝑦

and their 𝑥𝑦-folded paths consistent with respect to whether they are reachable paths.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:10 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

Table 1. Edge label notations for discussing RSM-reachability.

Notation Description

𝐿𝑥𝑦 = {ℓ | 𝑥 ℓ−→ 𝑦 ∈ 𝐸} the set of labels of the edges from 𝑥 to 𝑦.
𝐿𝑥_ = {ℓ | 𝑥 ℓ−→ 𝑣𝑖 ∈ 𝐸, 𝑣𝑖 ∈ 𝑉 } the set of labels of the outgoing edges of 𝑥 .
𝐿_𝑥 = {ℓ | 𝑣𝑖

ℓ−→ 𝑥 ∈ 𝐸, 𝑣𝑖 ∈ 𝑉 } the set of labels of the incoming edges of 𝑥 .
𝐿 ̸𝑦𝑥 = {ℓ | 𝑣𝑖

ℓ−→ 𝑥 ∈ 𝐸, 𝑣𝑖 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑦} the set of labels of the edges ending with 𝑥 and not starting with 𝑦.

𝐿𝑥 ̸𝑦 = {ℓ | 𝑥 ℓ−→ 𝑣𝑖 ∈ 𝐸, 𝑣𝑖 ∈ 𝑉 , 𝑣𝑖 ≠ 𝑦} the set of labels of the edges starting with 𝑥 and not ending with 𝑦.

The above example shows that, with determined 𝑄𝑥 and 𝑄𝑦 , we are able to identify whether
folding (𝑥,𝑦) preserves reachability equivalence by computing at most two transitions for each state
of 𝑄𝑥 and 𝑄𝑦 .

4.2 Folding Principle
Precisely computing 𝑄𝑥 and 𝑄𝑦 is equivalent to solving RSM-reachability, which is too expen-
sive for graph folding. This section formulates our graph folding principle using an alternative
overapproximation of 𝑄𝑥 , utilizing RSM properties, i.e., subsumption and equivalence relations of
states.

Overapproximating 𝑄𝑥 . With determined labels of incoming edges of 𝑥 , the local states of the
states in 𝑄𝑥 are determined. To facilitate the discussion, Table 1 lists the notations about the edge
labels involving 𝑥 and 𝑦. With all incoming edge labels 𝐿_𝑥 of a node 𝑥 in𝐺 , we collect a set of RSM
local states 𝑛′ with transitions 𝑛

ℓ−→ 𝑛′ and ℓ ∈ 𝐿_𝑥 . We define the set Nr(𝐿_𝑥 ) as

Nr(𝐿_𝑥 ) = {𝑛′ | 𝑛 ℓ−→ 𝑛′ ∈
⋃
𝑖

𝛿𝑖 , ℓ ∈ 𝐿_𝑥 }. (1)

Intuitively, Nr(𝐿_𝑥 ) holds the target RSM states whose transition labels belong to the incoming
edge label set 𝐿_𝑥 of 𝑥 . In particular, if 𝑥 ∈ 𝑉src, we let 𝑠init ∈ Nr(𝐿_𝑥 ). Obviously, the local states
of the states in 𝑄𝑥 belong to Nr(𝐿_𝑥 ). Computing Nr(𝐿_𝑥 ) is very inexpensive because given 𝐿_𝑥 ,
Nr(𝐿_𝑥 ) can be directly determined by checking the local transition functions of the RSM. As global
states are local states wrapped by layers of boxes, we have:

𝑄𝑥 ⊆ 𝐵∗ × Nr(𝐿_𝑥 ). (2)

Example 4.2 (Computing Nr(𝐿_𝑥 )). Given an RSM in Figure 4(a), Figure 4(c) is a graph segment of
an RSM-reachability instance running on the RSM. In the graph segment, 𝐿_𝑥 = {ℓ3}. In the RSM,
there is only one transition 𝑛1

ℓ3−→ ⟨𝑏, 𝑛0⟩ labeled by ℓ3. Thus, in Figure 4(c), Nr(𝐿_𝑥 ) = {⟨𝑏, 𝑛0⟩}.
Moreover, there is only one box in the RSM, i.e., 𝐵 = {𝑏}. Thus, 𝑄𝑥 ⊆ {𝑏}∗ × {⟨𝑏, 𝑛0⟩}.

In Section 4.1, we use Example 4.1 to show that we can determine whether folding (𝑥,𝑦) pre-
serves reachability equivalence by computing at most two transitions for each state of 𝑄𝑥 and
𝑄𝑦 . According to Property 3.1, each transition can exit at most one box. Namely, for 𝑄𝑥 and 𝑄𝑦 ,
examining the states with two layers of boxes is sufficient to cover all states, as outer boxes are
never affected by the two transitions. Correspondingly, while replacing 𝑄𝑥 by 𝐵∗ × Nr(𝐿_𝑥 ) and
𝐵∗ × Nr(𝐿_𝑦), examining the states of 𝐵𝛼 × Nr(𝐿_𝑥 ) and 𝐵𝛼 × Nr(𝐿_𝑦) where 𝛼 ≤ 2 is enough.

Rules for Consistency. In Section 4.1, we show that ensuring reachability equivalence is to satisfy
the two conditions of Definition 4.2, among which satisfying the exclusiveness condition (Cond. 1)
is simple and addressed immediately after Definition 4.2. Here, we provide four rules in Figure 5 for

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:11

(a) An RSM.

⟨𝑛0⟩ ∉ 𝐹 ⟨𝑛1⟩ ∉ 𝐹

𝐿1 = {ℓ2} 𝐿2 = {ℓ1, ℓ2}

⟨𝑛0⟩
𝐿1≃ ⟨𝑛1⟩ ⟨𝑛1⟩

𝐿2⪯ ⟨𝑛0⟩ ⟨𝑛0⟩ ̸
𝐿2⪯ ⟨𝑛1⟩

(b) ⪯ and ≃ relations.

(c) Pair (𝑥,𝑦) is foldable.

(d) Pair (𝑥,𝑦) is not foldable.

Fig. 4. Example of subsumption and equivalence relations of states and instances of foldable pairs (𝑥,𝑦).

Rule [x-x]: ∀𝑠𝑥
ℓ𝑥𝑦
−−−→ 𝑠𝑦

ℓ𝑦𝑥
−−−→ 𝑠 ′𝑥 ∈ 𝑅 𝑠.𝑡 . 𝑠𝑥 ∈ 𝐵𝛼 × Nr(𝐿_𝑥 )

∧
ℓ𝑥𝑦 ∈ 𝐿𝑥𝑦

∧
ℓ𝑦𝑥 ∈ 𝐿𝑦𝑥 , 𝑠 ′𝑥

𝐿𝑥_
⪯ 𝑠𝑥 .

Rule [y-y]: ∀𝑠𝑦
ℓ𝑦𝑥
−−−→ 𝑠𝑥

ℓ𝑥𝑦
−−−→ 𝑠 ′𝑦 ∈ 𝑅 𝑠.𝑡 . 𝑠𝑦 ∈ 𝐵𝛼 × Nr(𝐿_𝑦)

∧
ℓ𝑥𝑦 ∈ 𝐿𝑥𝑦

∧
ℓ𝑦𝑥 ∈ 𝐿𝑦𝑥 , 𝑠 ′𝑦

𝐿𝑦_
⪯ 𝑠𝑦 .

Rule [x-y]: ∀𝑠𝑥 ∈ 𝐵𝛼 × Nr(𝐿_𝑥 )
∧∀ℓ𝑥𝑦 ∈ 𝐿𝑥𝑦 , ∃𝑠𝑥

ℓ𝑥𝑦
−−−→ 𝑠𝑦 ∈ 𝑅 𝑠.𝑡 . 𝑠𝑥

𝐿𝑦�̸�
≃ 𝑠𝑦 .

Rule [y-x]: ∀𝑠𝑦 ∈ 𝐵𝛼 × Nr(𝐿_𝑦)
∧∀ℓ𝑦𝑥 ∈ 𝐿𝑦𝑥 , ∃𝑠𝑦

ℓ𝑦𝑥
−−−→ 𝑠𝑥 ∈ 𝑅 𝑠.𝑡 . 𝑠𝑦

𝐿𝑥 ̸𝑦
≃ 𝑠𝑥 .

Fig. 5. Rules for Cond. 2, where 𝛼 ∈ {0, 1, 2}, 𝐿𝑥𝑦 , 𝐿𝑥_, 𝐿𝑦�̸� , and Nr(𝐿_𝑥 ) are defined in Table 1 and Eq. 1.

satisfying the consistency condition (Cond. 2). The four rules exploit subsumption and equivalence
relations of states (Definition 4.5). Basically, the two relations are used to measure and compare the
capabilities of states being transited by edge labels involving 𝑥 and 𝑦.

Definition 4.5 (Subsumption ⪯ and Equivalence ≃ Relations of States). Given a set of labels 𝐿⊆Σ

and two states 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 , 𝑠𝑖 is subsumed by 𝑠 𝑗 with respect to 𝐿, denoted by 𝑠𝑖
𝐿
⪯ 𝑠 𝑗 , iff

(1) ∀ℓ ∈ 𝐿, ∀𝑠𝑘 ∈ 𝑆 , 𝑠𝑖
ℓ−→ 𝑠𝑘 ∈ Δ ⇒ 𝑠 𝑗

ℓ−→ 𝑠𝑘 ∈ Δ, and (2) 𝑠𝑖 ∈ 𝐹 ⇒ 𝑠 𝑗 ∈ 𝐹 .

Specifically, 𝑠𝑖 is equivalent to 𝑠 𝑗 with respect to 𝐿, denoted by 𝑠𝑖
𝐿≃ 𝑠 𝑗 , iff 𝑠𝑖

𝐿
⪯ 𝑠 𝑗

∧
𝑠 𝑗

𝐿
⪯ 𝑠𝑖 .

Example 4.3. Figure 4(b) gives an example of subsumption and equivalence relations of states in

the RSM of Figure 4(a). ⟨𝑛0⟩
𝐿1≃ ⟨𝑛1⟩ because both ⟨𝑛0⟩ and ⟨𝑛1⟩ can transit to ⟨𝑛2⟩ via ℓ2. ⟨𝑛1⟩

𝐿2⪯ ⟨𝑛0⟩
because ⟨𝑛1⟩ can transit to ⟨𝑛2⟩ via ℓ2 and ⟨𝑛0⟩ can not only transit to ⟨𝑛2⟩ via ℓ2 but also transit to

⟨𝑛1⟩ via ℓ1. In contrast, ⟨𝑛0⟩ ̸
𝐿2⪯ ⟨𝑛1⟩ because ⟨𝑛0⟩ can transit to ⟨𝑛1⟩ via ℓ1 whereas ⟨𝑛1⟩ cannot.

Based on the two relations in Definition 4.5, we briefly discuss the rules in Figure 5. By examining
the states of 𝐵𝛼 × Nr(𝐿_𝑥 ) and the labels of incoming and outgoing edges of 𝑥 and 𝑦, Rule [x-x]
ensures the consistency of the corresponding transition chains of paths passing through 𝑥 and 𝑦 by
starting and ending both with 𝑥 . Rule [x-y] ensures the consistency of the corresponding transition
chains of paths passing through an edge from 𝑥 to 𝑦. Rules [y-y] and [y-x] are symmetric to Rules
[x-x] and [x-y] with respect to 𝑥 and 𝑦.

Graph Folding Principle. We provide our principle for identifying foldable (𝑥,𝑦) in Theorem 4.1,
where Principles ➀ and ➁ are used to satisfy Cond. 1 and Cond. 2 of Definition 4.2, respectively.
Notably, in our folding principle, each rule in Figure 5 contains no more than two transitions, and
the value of 𝛼 , i.e., the layers of boxes, is no more than two.

Theorem 4.1 (Graph Folding Principle). Consider an RSM-reachability instance Reach⟨𝑅,𝐺⟩.
Without loss of generality, assume that there is always at least one edge from node 𝑥 to 𝑦 in 𝐺 . The

node pair (𝑥,𝑦) ∈ 𝐺 is foldable if both ➀ and ➁ hold:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:12 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

(a) Original graph. (b) Incorrectly folded (𝑥,𝑦).

Fig. 6. For the problem running on the RSM in Figure 1(a), if 𝑣1 ∈ 𝑉src and 𝑣2 ∈ 𝑉snk, folding (𝑥,𝑦) introduces

an additional reachable pair (𝑣1, 𝑣2) in 𝐺 ′
via 𝑣1

L
−→ 𝑥

M
−→ 𝑣2, which violates reachability equivalence.

➀ When there is no edge from 𝑦 to 𝑥 , 𝑦 ∉ 𝑉src and all the incoming edges of 𝑦 starts at 𝑥 ;

➁ The four rules in Figure 5 hold for all 𝛼 ∈ {0, 1, 2}.

Example 4.4 (Identifying Foldable Node Pairs). Figure 4(a) is an RSM, and Figures 4 (c) and (d)
are two graph segments based on the RSM. Assume that neither 𝑥 nor 𝑦 is a source. In Figure 4(c),
there is no edge from 𝑦 to 𝑥 , and the only incoming edge of 𝑦 starts at 𝑥 , so ➀ is satisfied. And for
➁, we only need to consider Rule [x-y]. It can be observed that Nr(𝐿_𝑥 ) = {⟨𝑏, 𝑛0⟩}, 𝐿𝑥𝑦 = {ℓ1} and

𝐿𝑦�̸� = {ℓ2}. We have ⟨𝑏, 𝑛0⟩
ℓ𝑥𝑦=ℓ1−−−−−→ ⟨𝑏, 𝑛1⟩ ∈ 𝑅 and ⟨𝑏, 𝑛0⟩

𝐿𝑦�̸�≃ ⟨𝑏, 𝑛1⟩. Therefore, the node pair (𝑥,𝑦) in
Figure 4(c) is foldable.

In Figure 4(d), Nr(𝐿_𝑥 ) = {⟨𝑏, 𝑛0⟩}, 𝐿𝑥𝑦 = {ℓ1}, 𝐿𝑦𝑥 = {ℓ3} and 𝐿𝑦�̸� = {ℓ2}. We have ⟨𝑏, 𝑛0⟩
ℓ𝑥𝑦=ℓ1−−−−−→

⟨𝑏, 𝑛1⟩
ℓ𝑦𝑥=ℓ3−−−−−→ ⟨𝑏, 𝑏, 𝑛0⟩ ∈ 𝑅 and ⟨𝑏, 𝑏, 𝑛0⟩ ̸

𝐿_𝑥
⪯ ⟨𝑏, 𝑛0⟩. This means that Rule [x-x] of ➁ is not satisfied.

Therefore, the node pair (𝑥,𝑦) in Figure 4(d) is not foldable.

The soundness of our graph folding principle manifests in that folding any node pair preserves
reachability equivalence. Besides, since the states of Nr(𝐿𝑦𝑥 ) in Rule [x-y] are doubly checked by
Rules [x-x] and [y-x], Nr(𝐿_𝑥 ) in Rule [x-y] can be replaced by Nr(𝐿 ̸𝑦𝑥 ) for simplicity. Similarly,
in Rule [y-x], Nr(𝐿_𝑦) can be replaced by Nr(𝐿�̸�𝑦). The principle decides foldability via only local
information (i.e., incoming and outgoing edges of a node pair in graph 𝐺). Therefore, it does not
exhaustively detect all foldable node pairs. For example, in Figure 1(b), if we only consider 𝑣0 as the
source and 𝑣7 as the sink, folding (𝑣1, 𝑣2) does not affect CFL-reachability result, whereas we do
not consider it as foldable because it violates Rule [x-y] in Figure 5.

4.3 Correctness of Folding Principle
We demonstrate the correctness of our graph folding by showing that Principles ➀ and ➁ in
Theorem 4.1 satisfies Cond. 1 and Cond. 2 in Definition 4.2, respectively. The proof is separated into
proving Lemma 4.1 and Lemma 4.2, where the former is simple and intuitive. To prove Lemma 4.2,
we first categorize the paths involving 𝑥 and 𝑦 into four basic types, as in Figure 7, and show how
each rule in Figure 5 ensures the consistency of each type, respectively. This gives rise to two
properties, i.e., Property 4.1 and Property 4.2, which are further used to prove Lemma 4.2.

Lemma 4.1. Principle ➀ in Theorem 4.1 implies the exclusiveness condition (Cond. 1) of Definition 4.2.

Proof. A source-sink path in𝐺 ′ that does not have an 𝑥𝑦-FEQ class in𝐺 can only be introduced
when there is no edge from 𝑦 to 𝑥 , as shown in Figure 6. In this case, when 𝑦 ∈ 𝑉src or 𝑦 has an
incoming edge from a node other than 𝑥 , folding (𝑥,𝑦) may introduce new source-sink paths from
𝑦 or the predecessors of 𝑦 to 𝑥 or the successors of 𝑥 . Such new paths do not have any 𝑥𝑦-FEQ class
in 𝐺 and can lead to spurious reachable pairs. Principle ➀ avoids such incorrect foldings. □

Lemma 4.2. Principle ➁ in Theorem 4.1 implies the exclusiveness condition (Cond. 2) of Definition 4.2.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:13

Type 1 Type 2 Type 3 Type 4

Original

Folded

Involved
rules

[x-x] [x-x] and [x-y] [y-y] [y-y] and [y-x]

Fig. 7. Four basic types of 𝑥𝑦-FEQ classes, where each type contains at most one 𝑥𝑦-subpath. For simplicity,

we only draw one edge from 𝑥 to 𝑦 and one edge from 𝑦 to 𝑥 .

We first illustrate the objectives to which the four rules take effect. Figure 7 categorizes all
paths containing at most one 𝑥𝑦-subpath1 into four basic types of 𝑥𝑦-FEQ classes, and shows
the corresponding rules for ensuring consistency for each type. Briefly, Rule [x-x] ensures the
consistency of the corresponding transition chains of paths where the 𝑥𝑦-subpath starts and
ends both with 𝑥 (Type 1). Rule [x-x] and Rule [x-y] together ensure the consistency of the
corresponding transition chains of paths where the 𝑥𝑦-subpath starts with 𝑥 and ends with 𝑦 (Type
2). Correspondingly, [y-y] and [y-x] ensure the consistency of Type 3, where 𝑥𝑦-subpath starts
and ends both with 𝑦, and Type 4, where 𝑥𝑦-subpath starts with 𝑦 and ends with 𝑥 .
Principle ➁ preserves the consistency for the four basic types as it has Property 4.1 and Prop-

erty 4.2, among which Property 4.1 is the realization of Property 3.1 in the corresponding states
of nodes, and it indicates that 𝐵𝛼 × Nr(𝐿_𝑥 ) and 𝐵𝛼 × Nr(𝐿_𝑦) where 𝛼 = 0, 1, 2 is enough to cover
all cases (states) in 𝑄𝑥 and 𝑄𝑦 . Property 4.2 guarantees the consistency of the endpoints of tran-
sition chains corresponding to the four basic types of 𝑥𝑦-FEQ classes, which further ensures the
satisfaction of Cond. 2. The detailed proofs of Property 4.1 and Property 4.2 are provided in our
supplementary material.

Property 4.1. If the four rules in Figure 5 hold when 𝛼 ≤ 2, they also hold for all 𝛼 > 2.

Property 4.2. With 𝑷𝑥𝑦 denoting an 𝑥𝑦-FEQ class belonging to the four basic types of Figure 7 and
𝑝𝐺′ denoting the 𝑥𝑦-folded path of 𝑷𝑥𝑦 , if the four rules in Figure 5 hold, then (i) 𝑝𝐺′ is a reachable
path iff 𝑷𝑥𝑦 contains a reachable path, and (ii) when the paths of 𝑷𝑥𝑦 do not end with 𝑥 or 𝑦, 𝑝𝐺′

corresponds to a sub-transition chain from 𝑠0 to 𝑠𝑘 iff 𝑷𝑥𝑦 also contains a path corresponding to a
sub-transition chain from 𝑠0 to 𝑠𝑘 .

Proof of Lemma 4.2. We use the four basic types and the two properties to prove Lemma 4.2. In
the original graph𝐺 , any path 𝑝𝐺 can be seen as the concatenation of subpaths 𝑝𝐺1𝑝𝐺2 · · · 𝑝𝐺𝑘 such
that (1) for each 𝑖 ∈ {1, · · · , 𝑘}, 𝑝𝐺𝑖 is either a path belonging to the four basic types of Figure 7
or a path not containing any 𝑥𝑦-subpath, and (2) for all 𝑖 < 𝑘 , 𝑝𝐺𝑖 does not end with either 𝑥
or 𝑦. Discussing 𝑘 = 1 is trivial as it either belongs to the four basic types, which is covered by
Property 4.2, or is a path not containing any 𝑥𝑦-subpath, which is never changed by folding (𝑥,𝑦).

Next, we consider 𝑘 > 1 and start from 𝑝𝐺1. For the case that 𝑝𝐺1 does not belong to the four basic
types, the corresponding transition chain is never changed by folding (𝑥,𝑦), i.e., the corresponding
states of nodes are not changed. For the case that 𝑝𝐺1 belongs to 𝑷𝑥𝑦1 one of the four basic types in
Figure 7, according to Definition 4.1, the 𝑥𝑦-folded path 𝑝𝐺1′ is exactly 𝑷𝑥𝑦 . Property 4.2 ensures
1Given two nodes 𝑥 and 𝑦 in a graph, an xy-path is a path comprised of edges joining 𝑥 and 𝑦.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:14 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

Algorithm 1: Implementation of Graph Folding Principle
1 Function Identify(𝑥, 𝑦)
2 𝑄𝑥 := Nr(𝐿_𝑥 ) ∪

(
𝐵 × Nr(𝐿_𝑥 )

)
∪
(
𝐵2 × Nr(𝐿_𝑥 )

)
;

3 𝑄𝑦 := Nr(𝐿_𝑦 ) ∪
(
𝐵 × Nr(𝐿_𝑦 )

)
∪
(
𝐵2 × Nr(𝐿_𝑦 )

)
;

4 if 𝐿𝑦𝑥 = ∅ and

(
𝑦 ∈ 𝑉src or 𝐿�̸�𝑦 ≠ ∅

)
then /* Theorem 4.1: ➀ */

5 return false;

6 if Check(𝑥, 𝑦) and Check(𝑦, 𝑥 ) then /* Theorem 4.1: ➁ */

7 return true;

8 return false;

9 Procedure Check(𝑣1, 𝑣2)
10 for each 𝑠𝑣1 ∈ 𝑄𝑣1 do

11 for each ℓ1 ∈ 𝐿𝑣1𝑣2 do

12 if not exists
(
𝑠𝑣1

ℓ1−→ 𝑠𝑣2 ∈ 𝑅 𝑠.𝑡 . 𝑠𝑣1

𝐿𝑣2 ̸𝑣1≃ 𝑠𝑣2
)
then

13 return false; /* Rules [x-y] and [y-x] of Figure 5 */

14 for each ℓ2 ∈ 𝐿𝑣2𝑣1 do

15 if exists
(
𝑠𝑣1

ℓ1−→ 𝑠𝑣2
ℓ2−→ 𝑠′𝑣1 ∈ 𝑅 𝑠.𝑡 . ¬(𝑠′𝑣1

𝐿𝑣1_⪯ 𝑠𝑣1 )
)
then

16 return false; /* Rules [x-x] and [y-y] of Figure 5 */

17 return true;

that 𝑝𝐺1′ corresponds to a transition chain from 𝑠init to 𝑠1 iff 𝑷𝑥𝑦1 also contains a path corresponding
to a transition chain from 𝑠init to 𝑠1.

Analogously, for the concatenation 𝑝𝐺1𝑝𝐺2 · · · 𝑝𝐺𝑘−1 that belongs to 𝑷𝑥𝑦𝑘−1, Property 4.2 ensures
that the 𝑥𝑦-folded path of 𝑝𝐺1𝑝𝐺2 · · · 𝑝𝐺𝑘−1 (i.e., of 𝑷𝑥𝑦𝑘−1) corresponds to a transition chain from
𝑠init to 𝑠𝑘−1 iff 𝑷𝑥𝑦𝑘−1 also contains a path corresponding to a transition chain from 𝑠init to 𝑠𝑘−1.

Finally, we consider the whole path 𝑝𝐺 , which belongs to 𝑷𝑥𝑦 and is folded into 𝑝𝐺′ . (1) For the
case that 𝑝𝐺𝑘

does not end with 𝑥 nor 𝑦, it can be inferred that 𝑝𝐺′ corresponds to a transition chain
from 𝑠init to 𝑠𝑘 iff 𝑷𝑥𝑦 also contains a path corresponding to a transition chain from 𝑠init to 𝑠𝑘 . (2)
For the case that 𝑝𝐺 ends with 𝑥 or 𝑦, Property 4.2 also ensures that 𝑝𝐺′ corresponds to a transition
chain from 𝑠init to 𝑠𝑘 such that 𝑠𝑘 ∈ 𝐹 iff 𝑷𝑥𝑦 also contains a path corresponding to a transition
chain from 𝑠init to 𝑠 ′𝑘 such that 𝑠 ′

𝑘
∈ 𝐹 . Therefore, for any 𝑥𝑦-FEQ class 𝑷𝑥𝑦 in 𝐺 and its 𝑥𝑦-folded

path 𝑝𝐺′ in 𝐺 ′, the four rules of Figure 5 ensures that 𝑝𝐺′ is a reachable path iff 𝑷𝑥𝑦 contains a
reachable path, which indicates the satisfaction of Cond. 2. □

Putting Lemmas 4.1, 4.2 and Definition 4.2 together, folding a node pair (𝑥,𝑦) satisfying ➀ and
➁ in Theorem 4.1 preserves reachability equivalence. Namely, Theorem 4.1 is correct.

5 GRAPH-FOLDING ALGORITHM
We then give an efficient graph-folding algorithm Gf that traverses and folds the input graphs for
CFL-reachability. Our algorithm implements the graph folding principle (Theorem 4.1). Gf has a
linear time complexity with respect to the number of nodes in input graphs.

5.1 Identifying Foldable Node Pairs
5.1.1 Implementation of Graph Folding Principle. Algorithm 1 describes a practical realization of the
folding principle in Theorem 4.1. The characteristic is that it only needs to compute the transitions
involving the incoming and outgoing edges of a pair of adjacent nodes 𝑥 and 𝑦. Specifically, in

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:15

Algorithm 2: Efficient Identification of Foldable Node Pairs
Ω⊕ : a set holding the patterns of foldable node pairs.
Ω⊖ : a set holding the patterns of non-foldable node pairs.

1 Function IsFoldable(𝑥, 𝑦)
2 consult the incoming and outgoing edges to determine Pattern(𝑥,𝑦) ;
3 if Pattern(𝑥,𝑦) ∈ Ω⊕ then return true ;
4 if Pattern(𝑥,𝑦) ∈ Ω⊖ then return false ;
5 if Identify(𝑥, 𝑦) then /* Algorithm 1 */

6 Ω⊕ := Ω⊕ ∪ {Pattern(𝑥,𝑦) }
7 return true;

8 Ω⊖ := Ω⊖ ∪ {Pattern(𝑥,𝑦) }
9 return false;

lines 2–3, we set the values of𝑄𝑥 and𝑄𝑦 as their overapproximate supersets according to Principle
➁ in Theorem 4.1. lines 4–5 and lines 6–7 verify the foldability of the input node pair based on
Principles ➀ and ➁, respectively.

Time Complexity. Algorithm 1 has a time complexity of 𝑂 ( |𝐵 |2 × |𝑁 | × |Σ|3), where 𝑁 =

∪𝑖∈{1, · · · ,𝑡 }𝑁𝑖 is the collection of all local states of the RSM. In Algorithm 1, the time complex-
ity of lines 2–5 can be regarded as 𝑂 (1) as they can be considered as lookups of hash tables. Then,
the time complexity of Algorithm 1 depends on the subprocedure Check. We can first assume that a
state transition 𝑠𝑖

𝑡−→ 𝑠 𝑗 ∈ 𝑅 can be performed in 𝑂 (1) time. According to Definition 4.5, given a set

of label 𝐿 and two states 𝑠1 and 𝑠2, checking 𝑠1
𝐿≃ 𝑠2 and 𝑠1

𝐿
⪯ 𝑠2 needs to perform𝑂 ( |𝐿 |) transitions.

Thus, the loops in lines 10–16 cost ( |𝑄𝑣1 |× |𝐿𝑣1𝑣2 |× |𝐿𝑣2 ̸𝑣1 | + |𝑄𝑣1 |× |𝐿𝑣1𝑣2 |× |𝐿𝑣2𝑣1 |× |𝐿𝑣1_ |) time, where
the value of 𝑄𝑣1 is given in line 2 or line 3. We can find that 𝑂 ( |𝑄𝑣1 |) = 𝑂 ( |𝐵 |2 × |𝑁 |), |𝐿𝑣1𝑣2 | ≤ |Σ|,
|𝐿𝑣2 ̸𝑣1 | ≤ |Σ|, |𝐿𝑣2𝑣1 | ≤ |Σ| and |𝐿𝑣1_ | ≤ |Σ|. Therefore, the time complexity of Algorithm 1 is
𝑂 ( |𝐵 |2 × |𝑁 | × |Σ|3).

5.1.2 Efficient Identification for Foldable Node Pairs. Algorithm 1 runs fast for small RSMs, but the
overall runtime increases when the RSMs become more complex. For real-world problems, we need
a more efficient identification strategy. In fact, real-world CFL-reachability problems usually have
an important trait—many node pairs share the same “pattern” of incoming and outgoing edges.
Specifically, we define the “pattern” of a node pair (𝑥,𝑦) as a tuple:

Pattern(𝑥,𝑦) = ⟨isSrc(𝑥), isSrc(𝑦), 𝐿 ̸𝑦𝑥 , 𝐿�̸�𝑦, 𝐿𝑥𝑦, 𝐿𝑦𝑥 , 𝐿𝑥 ̸𝑦, 𝐿𝑦�̸� ⟩ (3)
where isSrc(𝑥) and isSrc(𝑦) are two boolean variables denoting whether 𝑥 ∈ 𝑉src and whether
𝑦 ∈ 𝑉src. The value of Pattern(𝑥,𝑦) can be predefined or determined by consulting 𝑥 and 𝑦 and their
incoming and outgoing edges. Obviously, for two node pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2), checking whether
Pattern(𝑥1,𝑦1) = Pattern(𝑥2,𝑦2) is much faster than calling Algorithm 1 twice.
For the node pairs sharing the same pattern Pattern(𝑥,𝑦) , we do not need to repeatedly invoke

Algorithm 1 to check whether they are foldable. We use a set denoted by Ω⊕ to collect the patterns
of node pairs that are already identified as foldable by Algorithm 1. When Ω⊕ is fully filled, we can
identify whether a node pair is foldable by checking whether the pattern of the node pair is already
in Ω⊕ . Ω⊕ can be filled by verifying each possible pattern through Algorithm 1, where the number
of invocation depends only on the size of the alphabet Σ. Besides, we provide another strategy in
Algorithm 2, which dynamically constructs Ω⊕ during the process of graph folding with a set Ω⊖
holding patterns of non-foldable node pairs.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:16 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

Algorithm 3: Graph-Folding Algorithm Gf
𝑉
visited

: a set holding visited nodes.
𝐸
visited

: a set holding visited edges.
1 Function GF(𝐺,𝑅)
2 set Ω⊕ , Ω⊖ ,𝑉visited and 𝐸visited as ∅;
3 for each 𝑥 ∈ 𝑉 do

4 if 𝑥 ∉ 𝑉
visited

then Visit(𝑥 ); ;

5 return𝐺 ;

6 Procedure Visit(𝑥 )
7 𝑉

visited
:= 𝑉

visited
∪ {𝑥 }

8 for each 𝑥
ℓ−→ 𝑦 ∈ 𝐸 𝑠.𝑡 . 𝑦 ∉ 𝑉

visited
and 𝑥

ℓ−→ 𝑦 ∉ 𝐸
visited

do

9 add all edges joining 𝑥 and 𝑦 into 𝐸
visited

;
10 if IsFoldable(𝑥, 𝑦) then

11 Fold(𝑥, 𝑦) ;

12 Visit(𝑦)

13 Procedure Fold(𝑥, 𝑦)
14 Remove all edges joining 𝑥 and 𝑦;
15 for each 𝑧 ∈ 𝑉 𝑠.𝑡 . Rep(𝑧) = 𝑦 do /* Update representative nodes */

16 Rep(𝑧) := 𝑥 ;

17 Remove node 𝑦; /* Merge 𝑦 into 𝑥 */

5.2 Overall Algorithm
Algorithm 3 describes the overall graph-folding algorithm Gf. In addition to Ω⊕ and Ω⊖ in Algo-
rithm 2, Algorithm 3 maintains two sets 𝑉visited and 𝐸visited to collect the visited nodes and edges.
The procedures GF and Visit scan the input graph via a depth-first traversal. When visiting a node
𝑥 , the algorithm calls the identification procedure isFoldable for each unvisited direct successor
𝑦 of 𝑥 to check whether (𝑥,𝑦) is foldable. If (𝑥,𝑦) is foldable, the algorithm uses Fold(𝑥,𝑦) in
lines 13–17 to fold (𝑥,𝑦) and update representative nodes.

Complexity. Algorithm 3 has a linear time complexity with respect to the number of nodes in
the input graph. For real-world problems where the RSM is far smaller than the graph, the cost for
identifying and folding a node pair (lines 10–11) can be considered as𝑂 (1) time. The ordinary depth-
first traversal costs 𝑂 ( |𝑉 | + |𝐸 |) time. However, different from the ordinary depth-first traversal,
line 9 ensures that each node should not be visited twice through different edges. Lines 8–12 show
that the number of method invocations for IsFoldable(𝑥,𝑦) and Fold(𝑥,𝑦) does not exceed the
number of visited nodes. In Algorithm 3, each node is visited once, hence the time complexity of
Algorithm 3 is 𝑂 (𝑘 |𝑉 |) where 𝑘 is a constant representing the time for identifying and folding a
node pair. Namely, Gf has a linear time complexity with respect to the number of nodes of the
input graph.

6 EXPERIMENTS
We evaluate our graph-folding algorithmGf by applying it to two popular client analyses for C/C++:
value-flow analysis [Sui et al. 2014] and alias analysis [Zheng and Rugina 2008]. In particular, we
study the performance of Gf from two aspects: (1) the performance of Gf in reducing the input
graph sizes and (2) the speedups and memory overhead reductions for CFL-reachability, with the
input graphs simplified by Gf.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:17

𝑆 ::= call𝑖 𝑆 ret𝑖 | 𝑆 𝑆 | 𝑎∗ 𝑀 ::= 𝑑 𝑉 𝑑

𝑉 ::= (𝑀? 𝑎)∗ 𝑉 (𝑎 𝑀?)∗ | 𝑓𝑖 𝑉 𝑓𝑖 | 𝑀?

(a) Value-flow analysis. (b) Alias analysis.

Fig. 8. CFGs for context-sensitive value-flow analysis and field-sensitive alias analysis.

(a) Value-flow analysis. (b) Alias analysis. The doubly-circled nodes
denote the exits of𝑀1.

Fig. 9. RSMs for context-sensitive value-flow analysis and field-sensitive alias analysis.

In summary, the experimental results are promising. On average, by reducing 60.96% nodes
and 42.67% edges of the input graphs, Gf accelerates context-sensitive value-flow analysis by
4.65× with a memory reduction rate of 57.35%; by reducing 38.93% nodes and 35.61% edges, Gf
accelerates field-sensitive alias analysis by 3.21× with a memory reduction rate of 65.19%. Gf is
also well-compatible with existing techniques. The combination of Gf with SCC [Nuutila and
Soisalon-Soininen 1994] and InterDyck [Li et al. 2020] reduces up to 72.26% and 58.85% edges
from the input graph of context-sensitive value-flow analysis and field-sensitive alias analysis,
respectively, accelerating the analyses by at most 9.70× and 6.30×.

6.1 Experimental Setup
We have implemented Gf on top of LLVM-12.0.0, and conducted our experiments on a platform
consisting of an eight-core 2.60 GHz Intel Xeon CPU with 128 GB memory, running Ubuntu 18.04.
In our experiments, the patterns of foldable node pairs, i.e., Ω⊕ in Section 5.1.2, are precomputed.

Grammar Selection. We evaluate graph folding based on two client analyses, a context-sensitive
value-flow analysis [Sui et al. 2014] and a field-sensitive alias analysis [Zheng and Rugina 2008].
Figure 8 gives the corresponding context-free grammars. Both grammars extend Dyck languages
with regular languages, which are representative of many CFL-reachability-based program anal-
yses. In particular, Dyck languages have been extensively used to model function calls/returns,
references/dereferences, and field writes/reads [Kodumal and Aiken 2004]. Regular languages
have been used to model control/value flows. Moreover, the two client analyses have also been
evaluated in existing work [Lei et al. 2022; Wang et al. 2017]. Figure 9 gives the corresponding RSM
representations.

Value-flow Analysis. We conduct context-sensitive value-flow analyses on sparse value-flow
graphs (SVFGs) [Sui et al. 2014]. The RSM for context-sensitive value-flow analysis is displayed in
Figure 9(a), where “call𝑖” and “ret𝑖” denote call and return of a callsite, whose index is 𝑖; and “𝑎”
denotes an assignment instruction. In the RSM, the initial state and the final state are both ⟨𝑛1⟩, and
the unique box 𝑏 has a subscript 𝑖 , matching the index of call𝑖 and ret𝑖 . In this reachability problem,
nodes denoting the allocation/deallocation sites are marked as sources/sinks. It is worthwhile to

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:18 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

Table 2. Benchmark info and results of the baseline CFL-reachability solver, POCR [Lei et al. 2022]. #Node

and #Edge denote the numbers of nodes and edges of each input graph, respectively. P-Edge% denotes the

percentage of parenthesis edges out of the total edges of each input graph. Time/s and Mem./GB denote

the runtime and memory overhead of the baseline for analyzing each program, measured in seconds and

gigabytes, respectively.

Bench.

Value-flow analysis Alias analysis

#Node #Edge P-Edge% Time/s Mem./GB #Node #Edge P-Edge% Time/s Mem./GB

1.astyle 227140 394839 16.58% 2914 107.72 70906 150090 45.84% 172 8.01
2.git_checkout 488092 919390 37.65% 49643* 4.55* 78801 184734 42.05% 2052 61.51
3.i3 145259 212761 29.96% 36 4.69 39894 95620 43.57% 223 9.62
4.janet 227081 359552 33.10% 1218 35.06 43837 99292 43.17% 498 13.53
5.mruby 226528 340374 19.18% 26679* 2.43* 71265 176888 43.17% 2437 77.14
6.nvim 332733 402753 21.75% 15 2.35 99826 224170 43.18% 1327 69.65
7.opencv_test_video 385060 509439 10.47% 23 4.65 132068 279528 40.13% 534 18.58
8.psql 157014 228604 27.43% 131 13.78 40145 99164 44.59% 223 9.25
9.redis-cli 231372 367291 34.59% 72 12.32 55250 129528 45.45% 547 27.76
10.tmux 243828 390084 29.11% 182 10.35 76522 186808 45.63% 1676 91.90

∗ The results marked by ∗ are obtained by Graspan [Wang et al. 2017] because POCR ran out of memory.

point out that although the RSM in Figure 9(a) only focuses on context-sensitivity, the analysis is
field-sensitive because each field object in SVFGs is already represented as a distinct node.

Alias Analysis. Figure 9(b) gives the RSM for all-pair field-sensitive alias analyses, where all
nodes are considered as both sources and sinks. In the RSM, 𝑎 denotes an assignment, 𝑑 denotes
a pointer dereference, and 𝑓𝑖 denotes the address of the 𝑖-th field. The RSM contains three boxes
𝑏1, 𝑏2, and 𝑏3, which are all mapped to𝑀1. 𝑏3 has a subscript 𝑖 matching the field index of 𝑓𝑖 and
𝑓𝑖 . The RSM has an initial state ⟨𝑛1⟩ and four accepting states ⟨𝑛1⟩, ⟨𝑛2⟩, ⟨𝑛3⟩ and ⟨𝑛4⟩. The alias
analysis is conducted on program expression graphs (PEGs), which are bidirected, i.e., for each

𝑣𝑖
𝑡−→ 𝑣 𝑗 ∈ 𝐸 where 𝑡 ∈ Σ, there is a reverse 𝑣 𝑗

𝑡−→ 𝑣𝑖 ∈ 𝐸.

Benchmarks. We selected ten popular GitHub open-source C/C++ programs to benchmark our
analysis in Table 2. We chose these programs because they are diverse in terms of functionalities
as they include: development (astyle, nvim), version control (git-checkout), compiler (janet,
mruby), database (psql, redis_cli), computer vision (opencv_test_video), window manager
(i3) and terminal multiplexer (tmux). The SVFG and PEG of each program are generated by the
open-source tool SVF [Sui and Xue 2016b] from the bitcode files compiled by Clang-12.0.0 with the
-O3 flag and integrated by Whole Program LLVM.2

Evaluated Algorithms. Our graph-folding algorithm Gf is a preprocessing technique for speeding
up CFL-reachability. Therefore, in our evaluation, we need to choose a baseline CFL-reachability
algorithm (for solving CFL-reachability). To this end, we select two recent CFL-reachability solvers,
Graspan [Wang et al. 2017] and POCR [Lei et al. 2022]. In general, POCR runs faster than Graspan.
Therefore, we pick POCR [Lei et al. 2022] as the baseline CFL-reachability solver. However, POCR
ran out of memory on two benchmark programs git_checkout and mruby. For both programs,
we used Graspan to obtain the results. Table 2 displays the graph statistics and the results of the
baseline approach. We compare our graph-folding algorithm Gf against two existing preprocessing
techniques: cycle elimination (SCC) [Nuutila and Soisalon-Soininen 1994; Tarjan 1972] and graph

2https://github.com/travitch/whole-program-llvm.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.

https://github.com/travitch/whole-program-llvm


Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:19

Avg. reduction:
GF:60.96% SCC:3.77% GF+SCC: 64.29%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

N
od

e 
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC GF+SCC

Avg. reduction:
GF: 46.27% SCC: 6.76%                  InterDyck: 12.08%
GF+SCC: 52.67% GF+SCC+InterDyck: 61.22%

72.26%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

E
dg

e 
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(a) Node reduction. (b) Edge reduction.

Fig. 10. Reduction rates of nodes and edges in the input graphs of value-flow analysis.

Avg. reduction:
GF: 38.93% SCC: 0.91% GF+SCC: 39.37%

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10

N
od

e 
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC GF+SCC

Avg. reduction:
GF: 35.61% SCC: 1.57%                 InterDyck: 5.86%
GF+SCC: 36.59%         GF+SCC+InterDyck: 42.35%

58.82%

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10

E
dg

e 
R

ed
uc

ti
on

 R
at

e

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(a) Node reduction. (b) Edge reduction.

Fig. 11. Reduction rates of nodes and edges in the input graphs of alias analysis.

simplification for interleaved Dyck-reachability (InterDyck) [Li et al. 2020]. For each input graph,
SCC detects and collapses cycles comprised of a-edges, and InterDyck detects and eliminates the
non-Dyck-contributing parenthesis edges. Note that, unlike Gf, neither SCC nor InterDyck is a
general technique for CFL-reachability.

Evaluation of Correctness. To ensure correctness, we check whether the baseline CFL-reachability
solver can compute equivalent solutions from the original input graph𝐺 and the simplified version
𝐺 ′, which is folded from 𝐺 by Gf. Specifically, for each program, after obtaining the solutions
from 𝐺 and 𝐺 ′, we expand all reachable pairs comprised of representative nodes (𝑣 ′𝑖 , 𝑣 ′𝑗 ) in 𝐺 ′ into
{(𝑣𝑖 , 𝑣 𝑗 ) | Rep(𝑣𝑖 ) = 𝑣 ′𝑖 , Rep(𝑣 𝑗 ) = 𝑣 ′𝑗 }, and comparing the reachable pairs with the solutions on 𝐺 .
Our comparison demonstrates that the expanded solutions on the folded graphs are identical to the
solutions on the original graphs.

6.2 Performance in Reducing Graph Sizes
Figures 10 and 11 depict the reduction rates of nodes and edges in the input graphs of value-flow
analysis and alias analysis, respectively. As InterDyck does not remove nodes from a graph, the
node reduction charts (Figure 10(a) and Figure 11(a)) do not include the information of InterDyck.
A comparison of SCC, InterDyck and Gf shows that Gf is more efficient than SCC and InterDyck
in reducing the size of the input graphs for both clients. Specifically, by comparing Gf with SCC,
we find that cycle elimination reduces only a small number of nodes and edges in the preprocessing
stage. Prior work shows that cycle elimination works well in constraint-based pointer analysis
because the edges typically denote subset constraints [Hardekopf and Lin 2007a; Pereira and Berlin

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:20 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

Table 3. Runtime of Gf, SCC and InterDyck, measured in seconds.

Bench.

Value-flow analysis Alias analysis

Gf SCC InterDyck Gf SCC InterDyck

1.astyle 3.70 0.69 273.04 0.29 0.13 19.82
2.git_checkout 15.29 2.09 1625.84 0.40 0.21 337.87
3.i3 2.63 0.27 177.74 0.54 0.05 45.96
4.janet 4.01 0.80 464.37 0.19 0.07 27.41
5.mruby 15.74 0.82 718.08 0.44 0.15 257.75
6.nvim 16.72 0.94 152.02 0.44 0.31 122.89
7.opencv_test_video 57.80 2.35 541.36 0.55 0.47 22.54
8.psql 2.39 0.30 130.31 0.29 0.05 37.56
9.redis-cli 7.34 0.64 143.18 0.21 0.14 85.16
10.tmux 10.13 0.75 1040.18 0.32 0.16 216.08

2009]. However, in CFL-reachability, the edges in the input graph are labeled with different letters.
By comparing Gf with InterDyck, we find that InterDyck can reduce the number of parenthesis
edges. But because the proportions taken by parenthesis edges are not large (see Columns 4 and
9 of Table 2) in these two real-world clients, whereby the effectiveness of InterDyck is limited.
Besides, a comparison between node reduction rates and edge reduction rates of Gf shows that
folding tends to increase the density (#Edge/#Node) of the graph.
We also study the combinations Gf+SCC and Gf+SCC +InterDyck, which are depicted as the

dashed lines in Figures 10 and 11. The result shows that Gf complements SCC and InterDyck
well, i.e., they can be used together to further improve the performance of CFL-reachability. Table 3
shows the runtime of Gf, SCC and InterDyck when they are applied separately to the graphs. The
results show that SCC is the fastest, followed by Gf, and InterDyck is much slower. This is because
implementing InterDyck in these two clients needs to (1) detect and contract all non-parenthesis
edges, (2) use the FastDyck algorithm [Zhang et al. 2013] to find Dyck-contributing edges and
mark the “anchor” nodes and (3) detect and remove non-Dyck-contributing edges, where (1) costs
𝑂 ( |𝑉 |2) time, (2) costs 𝑂 ( |𝑉 | + |𝐸 |log|𝐸 |) time and (3) costs 𝑂 ( |𝐸 |log|𝐸 |) time.

6.3 Speedup and Memory Overhead
Figure 12 shows the speedups of CFL-reachability by Gf, SCC, InterDyck, and their combinations.
Taking the edge reduction rate (Figure 10(b) and Figure 11(b)) into consideration and comparing the
speedups among different graph simplification approaches, we observe that the reduction of more
edges from the graphs helps to improve CFL-reachability solving. Comparing the speedups of a
graph simplification approach among different programs, we can see that larger edge reduction rates
usually, but not always, result in larger speedups. This is because the runtime of CFL-reachability
solving depends not only on the size of the input graph but also on other graph traits, such as
density and edge types.
Figure 13 shows the reduction rates of memory overheads by Gf in the two client analyses.

Comparing the performance of git_checkout and mruby (solved by Graspan) with other bench-
marks (solved by POCR) in Figure 13(a), we can see that the memory overhead reduction by Gf for
POCR is much more significant than for Graspan. This is also observable in Figure 13(b), where
all benchmarks are solved by POCR. The insight is that when solving CFL-reachability, POCR
maintains a spanning tree for each node to hold the “transitive” edges (i.e., 𝑎-edges) for the graphs.
Reducing the nodes and edges in the graph also reduces the auxiliary spanning trees, leading to
those dramatic reduction rates of memory overhead. A comparison of Figure 12 and Figure 13
indicates that, in general, larger speedups correspond to larger memory overhead reductions. What

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:21

Avg. speedup:
GF: 4.65× SCC: 1.79× InterDyck: 2.47×
GF+SCC: 6.03× GF+SCC+InterDyck: 7.83×9.70 

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p/
×

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

Avg. speedup:
GF: 3.21× SCC: 1.27× InterDyck: 1.43×
GF+SCC: 3.74× GF+SCC+InterDyck: 4.18×

6.30 

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p/
×

Benchmark Number

GF SCC InterDyck GF+SCC GF+SCC+InterDyck

(a) Context-sensitive value-flow analysis. (b) Field-sensitive alias analysis.

Fig. 12. Speedups of CFL-reachability by Gf, SCC, InterDyck and their combinations.

61.57%

8.57%

73.35% 72.36%

19.34%

82.13%

58.71%

72.64%

59.82%
65.02%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

M
em

or
y 

U
sa

ge
 R

ed
uc

tio
n

Benchmark Number

Avg.: 57.35%

69.79%

59.37% 58.63%

72.21%

53.07%

72.66%
79.66%

45.41%

68.48%
72.59%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

M
em

or
y 

U
sa

ge
 R

ed
uc

tio
n

Benchmark Number

Avg.: 65.19%

(a) Context-sensitive value-flow analysis. (b) Field-sensitive alias analysis.

Fig. 13. Reduction rates of memory overhead by Gf.

lies behind this correlation is that solving CFL-reachability is adding new edges to the graph
according to existing edges. Therefore, a larger speedup means a larger reduction rate of edges that
need to be created and stored. This ultimately reduces the memory overhead.

6.4 Discussions
Graph Folding and Domain-Specific Edge Contraction. Perhaps the best-known domain-specific

edge contraction technique in static analysis is the offline variable substitution (OVS) for pointer
analysis [Rountev and Chandra 2000]. Specifically, OVS can contract a copy-edge from a node 𝑥
to another node 𝑦 if 𝑦 does not have its address taken and 𝑦 does not have any other incoming
copy-edge. In our evaluated alias analyses, Gf folds a node pair (𝑥,𝑦) where there is an 𝑎-edge
from 𝑥 to 𝑦 if 𝑦 does not have any incoming 𝑑-edge and 𝑓𝑖-edge, and does not have any incoming
𝑎-edge not from 𝑥 . The intrinsic meaning of the folding condition of Gf is equivalent to that of
OVS.3 Thus, OVS can be viewed as an instantiation of graph folding in pointer/alias analysis.

Foldability of Node Pairs v.s. Self-Loops in the RSM. By observing the RSMs of the two clients of
our experiments (Figures 9(a) and 9(b)), a common feature is that both RSMs contain self-loops,
e.g., 𝑛1

𝑎−→ 𝑛1 in the RSM of Figure 9(a). It is interesting to note that a foldable node pair does not
necessarily need to be joined by an edge that corresponds to a self-loop in the RSMs. Consider the
node pair (𝑥,𝑦) in Figure 4(c), whose foldability is discussed in Example 4.4. In the example, the
edge 𝑥

ℓ1−→ 𝑦 does not correspond to a self-loop in the RSM of Figure 4(a). In fact, the RSM in this
example does not contain any self-loop.

Choosing Sources and Sinks. In our value-flow analysis experiments, we chose allocation/dealloca-
tion sites as sources/sinks on SVFGs (Section 6.1), following the original memory leak detection [Sui
3In particular, an 𝑓𝑖 -edge is regarded as a copy-edge with an offset 𝑖 in field-sensitive analysis [Pearce et al. 2007].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



119:22 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

60.73%
50.90%

61.37% 58.60% 62.41% 66.17%
59.51% 60.76% 60.28% 57.90%

39.79%
31.90%

49.16%
44.82% 47.70%

59.65%

48.45% 49.96%
43.06% 40.89%

0%

20%

40%

60%

80%

R
ed

uc
tio

n 
R

at
e

Avg.=45.54%

Avg.=59.86% 

Node Edge

Bench. No. 1 2 3 4 5 6 7 8 9 10
#Free site 1224 4225 1760 3637 2796 4039 1821 3777 1118 2330

Fig. 14. Reduction rates of nodes and edges by Gf, for double-free value-flow analysis on the 10 benchmarks.

et al. 2014]. To further demonstrate the effectiveness of our approach, we perform an additional
double-free analysis by choosing source-sink pairs different from the memory leak detection appli-
cation. The double-free problem on SVFGs can also be seen as a source-sink reachability problem
by reusing the grammar in Figure 8(a) and the RSM in Figure 9(a). A simplified version of the
analysis requires that each allocated memory must be freed at most once when traversing SVFGs.
Specifically, any deallocation site of variable p should never reach any other deallocation sites of
variable q, where p and q are aliases. As a result, we choose deallocation sites as both the source and
sink in our simplified double-free analysis, in which each deallocation free(p) on SVFGs is treated as
a store instruction assigning an nullptr to the location that p points to. Figure 14 gives the number
of deallocation sites and the reduction rates of nodes and edges by Gf for each benchmark. We can
see that Gf can achieve similar reduction rates with a different set of sources and sinks. Compared
with the original value-flow analysis (Figure 10), the reduction rates in Figure 14 are slightly lower,
and the difference is roughly the number of free sites. This is because the sources in the simplified
double-free analysis usually have incoming 𝑎-edges. The node pairs involving such edges cannot
be folded by Gf, but are foldable in the value-flow analysis for memory leak detection.

7 RELATEDWORK
Due to the (sub)cubic time complexity of CFL-reachability with respect to the input graph size,
improving the practical performance of CFL-reachability is desirable. However, the truly subcubic
CFL-reachability algorithms [Le Gall 2014; Williams and Williams 2018] are impractical due to
the large constant. In the literature, significant progress has been made only for specific clients or
particular context-free grammars [Bastani et al. 2015; Chatterjee et al. 2018; Yan et al. 2011; Zhang
et al. 2013, 2014; Zheng and Rugina 2008].
Due to the impracticability of reducing the time complexity of CFL-reachability, reducing the

size of the input graph has been studied and adopted by many researchers. The most prevalent
technique is cycle elimination [Nuutila and Soisalon-Soininen 1994; Tarjan 1972], which has been
widely applied to an alternative form of CFL-reachability, i.e., constraint solving [Fähndrich et al.
1998; Hardekopf and Lin 2007a; Kodumal and Aiken 2004; Pereira and Berlin 2009; Xu et al. 2009].
What limits the applicability of cycle elimination in CFL-reachability is that whether a cycle can
be merged depends on the context-free grammar. Edge contraction has also been studied for
domain-specific clients [Hardekopf and Lin 2007b; Rountev and Chandra 2000]. Such methods can
be seen as specializations of our graph folding in these clients. Recently, Li et al. [2020] proposed an
algorithm to remove the non-Dyck-contributing edges for interleaved-Dyck-reachability problems.
The approach only focuses on reducing redundant parenthesis edges, but there are also numerous
non-parenthesis edges to be eliminated in real-world problems.
Reducing the redundancy of on-the-fly CFL-reachability solving is also studied by re-

searchers [Bravenboer and Smaragdakis 2009; Jordan et al. 2016; Lei et al. 2022; Wang et al. 2017].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.



Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:23

These techniques are orthogonal with our Gf, and they can be applied together to solve a CFL-
reachability problem. CFL-reachability is also studied in two alternative forms called (1) recursive
state machines (RSMs) [Alur et al. 2005b, 2006; Benerecetti et al. 2010; Chatterjee et al. 2015; Chat-
terjee and Velner 2012; Chaudhuri 2008], and (2) pushdown automata (PDA) [Chatterjee and Velner
2012; Reps et al. 2007, 2005; Rytter 1983; Späth et al. 2019; Wojciech and Rytter 1985]. Several
approaches are proposed to simplify visibly pushdown automata (VPA) [Gauwin et al. 2019; Heiz-
mann et al. 2017]. By exploiting the equivalence property of states, Heizmann et al. [2017] simplify
visibly pushdown automata (VPA) to make a complex automaton simple. Prior work shows that
the minimization of VPA is NP-complete by reducing the minimizing immersions problem to the
problem of minimizing VPA [Gauwin et al. 2019]. These techniques are also orthogonal to our
graph folding, as they focus on simplifying the CFL itself rather than the graph.

8 CONCLUSION
This paper has described a new graph folding technique for CFL-reachability. It has formulated the
criteria for foldable node pairs and proposed a graph-folding algorithm Gf. Experimental results
of context-sensitive value-flow analysis and field-sensitive alias analysis for C and C++ on ten
open-source programs show substantial performance improvements enabled by Gf via reducing
the graph sizes. On average, Gf reduces 60.96% of nodes and 42.67% of edges of the input graphs
for value-flow analysis, obtaining a speedup of 4.65× and a memory usage reduction of 57.35%,
and reduces 38.93% of nodes and 35.61% of edges of the input graphs for alias analysis, obtaining a
speedup of 3.21× and a memory usage reduction of 65.19%.

DATA AVAILABILITY STATEMENT
Materials for our evaluation are publicly available [Lei et al. 2023] and can be used to reproduce the
data of our experiment. The code is sourced from the project https://github.com/kisslune/POCR.

ACKNOWLEDGMENT
Wewould like to thank the anonymous reviewers and the shepherd Peisen Yao for valuable feedback
on earlier drafts of this paper, which helped improve its presentation. This research is supported by
Australian Research Grants DP210101348 and FT220100391; by Amazon under an Amazon Research
Award in automated reasoning; by the United States National Science Foundation (NSF) under grants
No. 1917924 and No. 2114627; and by the Defense Advanced Research Projects Agency (DARPA)
under grant N66001-21-C-4024. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of
the above sponsoring entities.

REFERENCES
Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas Reps, and Mihalis Yannakakis. 2005a. Analysis

of recursive state machines. ACM Transactions on Programming Languages and Systems (TOPLAS) 27, 4 (2005), 786–818.
https://doi.org/10.1145/1075382.1075387

Rajeev Alur, Swarat Chaudhuri, Kousha Etessami, and P Madhusudan. 2005b. On-the-fly reachability and cycle detection
for recursive state machines. In International Conference on Tools and Algorithms for the Construction and Analysis of

Systems. Springer, 61–76. https://doi.org/10.1007/978-3-540-31980-1_5
Rajeev Alur, Salvatore La Torre, and P Madhusudan. 2006. Modular strategies for recursive game graphs. Theoretical

computer science 354, 2 (2006), 230–249. https://doi.org/10.1016/j.tcs.2005.11.017
Rajeev Alur and Parthasarathy Madhusudan. 2004. Visibly pushdown languages. In Proceedings of the thirty-sixth annual

ACM symposium on Theory of computing. 202–211. https://doi.org/10.1145/1007352.1007390
Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification Inference Using Context-Free Language Reachability.

Acm Sigplan Notices 50, 1 (2015), 553–566. https://doi.org/10.1145/2775051.2676977

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.

https://github.com/kisslune/POCR
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/978-3-540-31980-1_5
https://doi.org/10.1016/j.tcs.2005.11.017
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/2775051.2676977


119:24 Yuxiang Lei, Yulei Sui, Shin Hwei Tan, and Qirun Zhang

Massimo Benerecetti, Stefano Minopoli, and Adriano Peron. 2010. Analysis of timed recursive state machines. In 2010 17th

International Symposium on Temporal Representation and Reasoning. IEEE, 61–68. https://doi.org/10.1145/1075382.1075387
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. In

Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications.
243–262. https://doi.org/10.1145/1639949.1640108

Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2018. Optimal Dyck reachability for data-dependence
and alias analysis. Proc. ACM Program. Lang. 2, POPL (2018), 30:1–30:30. https://doi.org/10.1145/3158118

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh Goyal. 2015. Faster algorithms for
algebraic path properties in recursive state machines with constant treewidth. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 97–109. https://doi.org/10.1145/2676726.2676979
Krishnendu Chatterjee and Yaron Velner. 2012. Mean-payoff pushdown games. In 2012 27th Annual IEEE Symposium on

Logic in Computer Science. IEEE, 195–204. https://doi.org/10.1109/LICS.2012.30
Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 159–169. https://doi.org/10.1145/1328897.1328460
Manuel Fähndrich, Jeffrey S Foster, Zhendong Su, and Alexander Aiken. 1998. Partial online cycle elimination in in-

clusion constraint graphs. In Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and

implementation. 85–96. https://doi.org/10.1145/277652.277667
Olivier Gauwin, Anca Muscholl, and Michael Raskin. 2019. Minimization of visibly pushdown automata is NP-complete.

arXiv preprint arXiv:1907.09563 (2019). https://doi.org/10.48550/arXiv.1907.09563
Tang Hao, Xiaoyin Wang, Lingming Zhang, Xie Bing, Zhang Lu, and Mei Hong. 2015. Summary-Based Context-Sensitive

Data-Dependence Analysis in Presence of Callbacks. In Acm Sigplan-sigact Symposium on Principles of Programming

Languages. https://doi.org/10.1145/2676726.2676997
Ben Hardekopf and Calvin Lin. 2007a. The ant and the grasshopper: fast and accurate pointer analysis for millions of lines

of code. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation.
290–299. https://doi.org/10.1145/1273442.1250767

Ben Hardekopf and Calvin Lin. 2007b. Exploiting pointer and location equivalence to optimize pointer analysis. In
International Static Analysis Symposium. Springer, 265–280. https://doi.org/10.1007/978-3-540-74061-2_17

David L. Heine and Monica S. Lam. 2003. A practical flow-sensitive and context-sensitive C and C++ memory leak detector.
(2003), 168. https://doi.org/10.1145/780822.781150

Matthias Heizmann, Christian Schilling, and Daniel Tischner. 2017. Minimization of visibly pushdown automata using
partial Max-SAT. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
461–478. https://doi.org/10.48550/arXiv.1701.05160

Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of program analyzers. In International

Conference on Computer Aided Verification. Springer, 422–430. https://doi.org/10.1007/978-3-319-41540-6_23
John Kodumal and Alex Aiken. 2004. The set constraint/CFL reachability connection in practice. ACM Sigplan Notices 39, 6

(2004), 207–218. https://doi.org/10.1145/996893.996867
François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th international symposium

on symbolic and algebraic computation. 296–303. https://doi.org/10.1145/2608628.2608664
Yuxiang Lei, Shin Hwei Sui, Tan, and Qirun Zhang. 2023. Artifact of “Recursive State Machine Guided Graph Folding for

Context-Free Language Reachability”. https://doi.org/10.5281/zenodo.7708433
Yuxiang Lei and Yulei Sui. 2019. Fast and precise handling of positive weight cycles for field-sensitive pointer analysis. In

International Static Analysis Symposium. Springer, 27–47. https://doi.org/10.1007/978-3-030-32304-2_3
Yuxiang Lei, Yulei Sui, Shuo Ding, and Qirun Zhang. 2022. Taming transitive redundancy for context-free language

reachability. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1556–1582. https://doi.org/10.1145/
3563343

Yuanbo Li, Qirun Zhang, and Thomas Reps. 2020. Fast graph simplification for interleaved Dyck-reachability. In PLDI ’20:

41st ACM SIGPLAN International Conference on Programming Language Design and Implementation. https://doi.org/10.
1145/3385412.3386021

David Melski and Thomas Reps. 2000. Interconvertibility of a class of set constraints and context-free-language reachability.
Theoretical Computer Science 248, 1-2 (2000), 29–98. https://doi.org/10.1145/258994.259006

Nomair A Naeem and Ondrej Lhoták. 2008. Typestate-like analysis of multiple interacting objects. ACM Sigplan Notices 43,
10 (2008), 347–366. https://doi.org/10.1145/1449764.1449792

Esko Nuutila and Eljas Soisalon-Soininen. 1994. On finding the strongly connected components in a directed graph. Inform.

Process. Lett. 49, 1 (1994), 9–14. https://doi.org/10.1016/0020-0190(94)90047-7
David J Pearce, Paul HJ Kelly, and Chris Hankin. 2007. Efficient field-sensitive pointer analysis of C. ACM Transactions on

Programming Languages and Systems (TOPLAS) 30, 1 (2007), 4–es. https://doi.org/10.1145/1290520.1290524

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.

https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/3158118
https://doi.org/10.1145/2676726.2676979
https://doi.org/10.1109/LICS.2012.30
https://doi.org/10.1145/1328897.1328460
https://doi.org/10.1145/277652.277667
https://doi.org/10.48550/arXiv.1907.09563
https://doi.org/10.1145/2676726.2676997
https://doi.org/10.1145/1273442.1250767
https://doi.org/10.1007/978-3-540-74061-2_17
https://doi.org/10.1145/780822.781150
https://doi.org/10.48550/arXiv.1701.05160
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/996893.996867
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.5281/zenodo.7708433
https://doi.org/10.1007/978-3-030-32304-2_3
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3563343
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/258994.259006
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1016/0020-0190(94)90047-7
https://doi.org/10.1145/1290520.1290524


Recursive State Machine Guided Graph Folding for Context-Free Language Reachability 119:25

Fernando Magno Quintao Pereira and Daniel Berlin. 2009. Wave propagation and deep propagation for pointer analysis. In
2009 International Symposium on Code Generation and Optimization. IEEE, 126–135. https://doi.org/10.1109/CGO.2009.9

Jakob Rehof and Manuel Fähndrich. 2001. Type-base flow analysis: from polymorphic subtyping to CFL-reachability. ACM
SIGPLAN Notices 36, 3 (2001), 54–66. https://doi.org/10.1145/373243.360208

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 49–61. https:
//doi.org/10.1145/199448.199462

Thomas Reps, Akash Lal, and Nick Kidd. 2007. Program analysis using weighted pushdown systems. In International

Conference on Foundations of Software Technology and Theoretical Computer Science. Springer, 23–51. https://doi.org/10.
1007/978-3-540-77050-3_4

Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. 2005. Weighted pushdown systems and their application to
interprocedural dataflow analysis. Science of Computer Programming 58, 1-2 (2005), 206–263. https://doi.org/10.1016/j.
scico.2005.02.009

Thomas W. Reps. 1998. Program analysis via graph reachability. Information & Software Technology 40, 11-12 (1998), 701–726.
https://doi.org/10.1016/S0950-5849(98)00093-7

Atanas Rountev and Satish Chandra. 2000. Off-line variable substitution for scaling points-to analysis. Acm Sigplan Notices

35, 5 (2000), 47–56. https://doi.org/10.1145/349299.349310
Wojciech Rytter. 1983. Time complexity of loop-free two-way pushdown automata. Inform. Process. Lett. 16, 3 (1983),

127–129. https://doi.org/10.1016/0020-0190(83)90063-7
Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-sensitive data-flow analysis using synchronized

Pushdown systems. Proc. ACM Program. Lang. 3, POPL (2019), 48:1–48:29. https://doi.org/10.1145/3291641
Yulei Sui, Xiao Cheng, Guanqin Zhang, and Haoyu Wang. 2020. Flow2Vec: value-flow-based precise code embedding.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–27. https://doi.org/10.1145/3428301
Yulei Sui and Jingling Xue. 2016a. On-demand strong update analysis via value-flow refinement. In Proceedings of the 2016

24th ACM SIGSOFT international symposium on foundations of software engineering. 460–473. https://doi.org/10.1145/
2950290.2950296

Yulei Sui and Jingling Xue. 2016b. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th

international conference on compiler construction. 265–266. https://doi.org/10.1145/2892208.2892235
Yulei Sui and Jingling Xue. 2018. Value-flow-based demand-driven pointer analysis for C and C++. IEEE Transactions on

Software Engineering 46, 8 (2018), 812–835. https://doi.org/10.48550/arXiv.1701.05650
Yulei Sui, Ding Ye, and Jingling Xue. 2014. Detecting memory leaks statically with full-sparse value-flow analysis. IEEE

Transactions on Software Engineering 40, 2 (2014), 107–122. https://doi.org/10.1145/2338965.2336784
Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal on computing 1, 2 (1972), 146–160.

https://doi.org/10.1137/0201010
Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. 2017. Graspan: A single-machine disk-based

graph system for interprocedural static analyses of large-scale systems code. ACM SIGARCH Computer Architecture News

45, 1 (2017), 389–404. https://doi.org/10.1145/3093336.3037744
Virginia Vassilevska Williams and R. Ryan Williams. 2018. Subcubic Equivalences Between Path, Matrix, and Triangle

Problems. J. ACM 65, 5 (2018), 27:1–27:38. https://doi.org/10.1145/3186893
Wojciech and Rytter. 1985. Fast recognition of pushdown automaton and context-free languages. Information and Control

(1985). https://doi.org/10.1016/S0019-9958(85)80024-3
Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-reachability-based points-to analysis using context-

sensitive must-not-alias analysis. In European Conference on Object-Oriented Programming. Springer, 98–122. https:
//doi.org/10.1007/978-3-642-03013-0_6

Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-sensitive alias analysis for Java. In Proceedings

of the 2011 International Symposium on Software Testing and Analysis. 155–165. https://doi.org/10.1145/2001420.2001440
Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms for Dyck-CFL-reachability with applications

to alias analysis. In Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation.
435–446. https://doi.org/10.1145/2491956.2462159

Qirun Zhang and Zhendong Su. 2017. Context-sensitive data-dependence analysis via linear conjunctive language
reachability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. 344–358.
https://doi.org/10.1145/3093333.3009848

Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. 2014. Efficient subcubic alias analysis for C. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications.
829–845. https://doi.org/10.1145/2660193.2660213

Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 197–208. https://doi.org/10.1145/1328897.1328464

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 119. Publication date: June 2023.

https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1145/373243.360208
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/978-3-540-77050-3_4
https://doi.org/10.1007/978-3-540-77050-3_4
https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/349299.349310
https://doi.org/10.1016/0020-0190(83)90063-7
https://doi.org/10.1145/3291641
https://doi.org/10.1145/3428301
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.48550/arXiv.1701.05650
https://doi.org/10.1145/2338965.2336784
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3093336.3037744
https://doi.org/10.1145/3186893
https://doi.org/10.1016/S0019-9958(85)80024-3
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/3093333.3009848
https://doi.org/10.1145/2660193.2660213
https://doi.org/10.1145/1328897.1328464

	Abstract
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	3.1 Recursive State Machines
	3.2 RSM-Reachability
	3.3 Graph Folding

	4 Principle for Graph Folding
	4.1 Correspondence between Graph Folding and RSM-Reachability
	4.2 Folding Principle
	4.3 Correctness of Folding Principle

	5 Graph-Folding Algorithm
	5.1 Identifying Foldable Node Pairs
	5.2 Overall Algorithm

	6 Experiments
	6.1 Experimental Setup
	6.2 Performance in Reducing Graph Sizes
	6.3 Speedup and Memory Overhead
	6.4 Discussions

	7 Related Work
	8 Conclusion
	References

